Equivalent capacitances of coplanar waveguide discontinuities and interdigitated capacitors using a three-dimensional finite difference method

Equivalent capacitances of coplanar waveguide discontinuities on multilayered substrates are calculated using a three-dimensional finite-different method. The application of the method is demonstrated for open ends and gaps in microstrip and coplanar waveguides, as well as for more complicated structures such as interdigitated capacitors. The main advantage of the method is its flexibility in treating multilayered substrates and different conductor configurations. It can therefore be applied to more complicated structures such as interdigitated capacitors, air bridges, and waveguide transitions. The effect of conductor metallization thickness and shielding walls is also taken into account. Good agreement between the calculated data and measurements up to 25 GHz in the case of coplanar structures indicates the validity of the static analysis even for high frequencies. >