FIRST MICROLENS MASS MEASUREMENT: PLANET PHOTOMETRY OF EROS BLG-2000-5

We analyze PLANET photometric observations of the caustic-crossing binary lens microlensing event, EROS BLG-2000-5, and find that modeling the observed light curve requires incorporation of the microlens parallax and the binary orbital motion. The projected Einstein radius (E = 3.61 ± 0.11 AU) is derived from the measurement of the microlens parallax, and we are also able to infer the angular Einstein radius (θE = 1.38 ± 0.12 mas) from the finite source effect on the light curve, combined with an estimate of the angular size of the source given by the source position in a color-magnitude diagram. The lens mass, M = 0.612 ± 0.057 M☉, is found by combining these two quantities. This is the first time that parallax effects are detected for a caustic-crossing event and also the first time that the lens mass degeneracy has been completely broken through photometric monitoring alone. The combination of E and θE also allows us to conclude that the lens lies in the near side of the disk, within 2.6 kpc of the Sun, while the radial velocity measurement indicates that the source is a Galactic bulge giant.

[1]  M. Dominik,et al.  PLANET Observations of Microlensing Event OGLE-1999-BUL-23: Limb-darkening Measurement of the Source Star , 2000, astro-ph/0004243.

[2]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[3]  M. J. Lehner,et al.  First Observation of Parallax in a Gravitational Microlensing Event , 1995, astro-ph/9506114.

[4]  Mareki Honma MACHO Mass Determination Based on Space Telescope Observation , 1999 .

[5]  A. Tomaney,et al.  MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing , 1997 .

[6]  D. Bennett,et al.  VLT-UVES spectroscopy of a bulge giant magnified through microlensing: EROS-BLG-2000-5 , 2002 .

[7]  U S Nautical Almanac Office,et al.  The Astronomical Almanac , 1999 .

[8]  Todd J. Henry,et al.  The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass , 1993 .

[9]  Predicting Stellar Angular Sizes , 1999, astro-ph/9904295.

[10]  S. Mao,et al.  Can lensed stars be regarded as pointlike for microlensing by MACHOs , 1994 .

[11]  Optical Gravitational Lensing Experiment OGLE‐1999‐BUL‐32: the longest ever microlensing event – evidence for a stellar mass black hole? , 2001, astro-ph/0108312.

[12]  O. Shemmer,et al.  Discovery of a planet orbiting a binary star system from gravitational microlensing , 1999, Nature.

[13]  M. S. Roberts Galactic astronomy. , 1981, Science.

[14]  Royal Greenwich Observatory,et al.  The Astronomical Almanac for the year 2003 , 1999 .

[15]  J. Beaulieu,et al.  Limits on stellar and planetary companions in microlensing event OGLE-1998-BUL-14 , 1999, astro-ph/9909325.

[16]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[17]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[18]  Andrew Gould,et al.  Proper Motions of MACHOs , 1994 .

[19]  P. M. Vreeswijk,et al.  Microlensing Constraints on the Frequency of Jupiter-Mass Companions: Analysis of 5 Years of PLANET Photometry , 2001, astro-ph/0104100.

[20]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[21]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[22]  A. Gould,et al.  Resolving Microlens Blends Using Image Subtraction , 2001, astro-ph/0108296.

[23]  Combined Analysis of the Binary Lens Caustic-crossing Event MACHO 98-SMC-1 , 1999, astro-ph/9907247.

[24]  Andrew Gould,et al.  Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .

[25]  J. Beaulieu,et al.  A Complete Set of Solutions for Caustic Crossing Binary Microlensing Events , 1999, astro-ph/9903008.

[26]  M. Dominik,et al.  Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41* , 2000 .

[27]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[28]  D. Holz,et al.  Photon Statistics Limits for Earth-Based Parallax Measurements of MACHO Events , 1995, astro-ph/9503039.

[29]  A. Drake,et al.  Binary Microlensing Events from the MACHO Project , 2000 .

[30]  R. Kayser,et al.  A parallax effect due to gravitational micro-lensing , 1986, Nature.

[31]  C. Alcock Gravitational lenses , 1982, Nature.

[32]  Complete Parallax and Proper Motion Solutions For Halo Binary-Lens Microlensing Events , 1998, astro-ph/9809388.

[33]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[34]  Andrew Gould MACHO Parallaxes from a Single Satellite , 1995 .

[35]  P. Wozniak,et al.  Optical Gravitational Lensing Experiment: Difference Image Analysis of OGLE-2000-BUL-43, a Spectacular Ongoing Parallax Microlensing Event , 2001 .

[36]  R. Nemiroff,et al.  Finite source sizes and the information content of macho-type lens search light curves , 1994, astro-ph/9401005.

[37]  David Harper,et al.  The Astronomical Almanac , 1998 .

[38]  O. University,et al.  Spatial/Spectral Resolution of a Galactic Bulge K3 Giant Stellar Atmosphere via Gravitational Microlensing , 2001, astro-ph/0101025.

[39]  A. Gould,et al.  MICROLENSING EVENTS : THIN DISK, THICK DISK, OR HALO ? , 1994 .

[40]  K. Stanek Extinction Map of Baade’s Window , 1995, astro-ph/9512137.

[41]  M. Dominik,et al.  The relative lens-source proper motion in MACHO 98-SMC-1 , 1998, astro-ph/9807086.

[42]  Andrew Gould,et al.  Microlens Mass Measurement Using Triple-Peak Events , 2001 .