Thermal gelation or gel melting: (ethylene glycol)113‐(l‐alanine)12 and (ethylene glycol)113‐(l‐lactic acid)12

When PEG (M.W.∼5000 Daltons) is conjugated to poly(l-alanine), the polymer aqueous solutions ( 30.0 wt.%) undergo gel-to-sol (gel melting) as the temperature increases. In the search for molecular origins of such a quite different phase behavior, poly(ethylene glycol)-poly(l-alanine) (PEG-PA; EG113-A12) and poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLA; EG113-LA12) are synthesized and their aqueous solution behavior is investigated. PEG-PAs with an α-helical core assemble into micelles with a broad size distribution, and the dehydration of PEG drives the aggregation of the micelles, leading to thermal gelation, whereas increased molecular motion of the PLA core overwhelms the partial dehydration of PEG, thus gel melting of the PEG-PLA aqueous solutions occurs. The core-rigidity of micelles must be one of the key factors in determining whether a polymer aqueous solution undergoes sol-to-gel or gel-to-sol transition, as the temperature increases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, , 52, 2434–2441

[1]  Lin Yu,et al.  Salt-induced reentrant hydrogel of poly(ethylene glycol)–poly(lactide-co-glycolide) block copolymers , 2014 .

[2]  N. Anton,et al.  Rheological study of chitosan/polyol-phosphate systems: influence of the polyol part on the thermo-induced gelation mechanism. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[3]  Yukyung Jung,et al.  Changes in nanoassembly of oligocaprolactone end-capped Pluronic F127 and the abnormal hydrophobicity trend of phase transition , 2013 .

[4]  T. Kawai,et al.  Thermal-sensitive viscosity transition of elongated micelles induced by breaking intermolecular hydrogen bonding of amide groups. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[5]  B. Jeong,et al.  Recent progress of in situ formed gels for biomedical applications , 2013 .

[6]  Chaoliang He,et al.  Versatile biofunctionalization of polypeptide-based thermosensitive hydrogels via click chemistry. , 2013, Biomacromolecules.

[7]  Dicheng Yang,et al.  Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating , 2013, Macromolecular Research.

[8]  Jun Li,et al.  Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. , 2012, Biomacromolecules.

[9]  J. Weisel,et al.  The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots. , 2012, Biophysical journal.

[10]  B. Jeong,et al.  Temperature-responsive compounds as in situ gelling biomedical materials. , 2012, Chemical Society reviews.

[11]  Rajesh R Naik,et al.  Structure of a peptide adsorbed on graphene and graphite. , 2012, Nano letters.

[12]  H. Deng,et al.  Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. , 2011, Biomaterials.

[13]  S. Park,et al.  Block sequence affects thermosensitivity and nano-assembly: PEG-L-PA-DL-PA and PEG-DL-PA-L-PA block copolymers , 2011 .

[14]  Eun Hye Kim,et al.  In situ thermal gelling polypeptide for chondrocytes 3D culture. , 2010, Biomaterials.

[15]  Sytze J Buwalda,et al.  Self-aggregation of gel forming PEG-PLA star block copolymers in water. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[16]  Harshil Dhruv,et al.  Bioresponsive copolymers of poly(N-isopropylacrylamide) with enzyme-dependent lower critical solution temperatures. , 2010, Biomacromolecules.

[17]  Bo Chi,et al.  Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(L-alanine) block copolymers , 2010 .

[18]  Jun Li,et al.  Biodegradable thermogelling poly[(R)-3-hydroxybutyrate]-based block copolymers: micellization, gelation, and cytotoxicity and cell culture studies. , 2009, The journal of physical chemistry. B.

[19]  Bo Chi,et al.  Reverse thermal gelation of PAF-PLX-PAF block copolymer aqueous solution. , 2009, Biomacromolecules.

[20]  H. Lee,et al.  Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[21]  Y. Sohn,et al.  Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers , 2008 .

[22]  Lin Yu,et al.  Roles of Hydrophilic Homopolymers on the Hydrophobic-Association-Induced Physical Gelling of Amphiphilic Block Copolymers in Water , 2008 .

[23]  Lin Yu,et al.  Injectable hydrogels as unique biomedical materials. , 2008, Chemical Society reviews.

[24]  Jun Li,et al.  Biodegradable thermosensitive copolymer hydrogels for drug delivery , 2007 .

[25]  Lin Yu,et al.  A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. , 2006, Angewandte Chemie.

[26]  Chien-Hsien Chen,et al.  Thermally Responsive Interactions between the PEG and PNIPAAm Grafts Attached to the PAAc Backbone and the Corresponding Structural Changes of Polymeric Micelles in Water , 2005 .

[27]  W. Loh,et al.  Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release. , 2003, Biomaterials.

[28]  Young Moo Lee,et al.  A Thermosensitive Poly(organophosphazene) Gel , 2002 .

[29]  Anna Gutowska,et al.  Biodegradable thermoreversible gelling PLGA-g-PEG copolymers , 2001 .

[30]  R. Xu,et al.  Binding of sodium dodecyl sulfate (SDS) to the ABA block copolymer pluronic F127 (EO97PO69EO97): F127 aggregation induced by SDS , 2001 .

[31]  C. Booth,et al.  Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution , 2000 .

[32]  Sung Wan Kim,et al.  Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions , 1999 .

[33]  S. Choi,et al.  Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. II , 1999 .

[34]  T. A. Hatton,et al.  Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association , 1994 .