Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods

Porous Fe3O4/Fe/SiO2 core/shell nanorods were fabricated, in which the diameter of the pores was 5–30 nm. The magnetic and electromagnetic properties were investigated. The temperature dependent magnetic measurements showed that these nanorods were ferromagnetic with a Verwey temperature of 129 K. The electromagnetic data indicated that effective complementarities between the dielectric loss and the magnetic loss were realized, suggesting that they have excellent electromagnetic wave absorption properties. Thus the porous core/shell nanorods could be used as a kind of candidate absorber.

[1]  X. G. Liu,et al.  Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules , 2008 .

[2]  H. Meng,et al.  Microwave-absorption properties of ZnO-coated iron nanocapsules , 2008 .

[3]  Haitao Yang,et al.  Synthesis and magnetic properties of monodisperse magnetite nanocubes , 2008 .

[4]  Masao Terada,et al.  Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range , 2007 .

[5]  L. Deng,et al.  Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability , 2007 .

[6]  Dong-Hwang Chen,et al.  Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles , 2007 .

[7]  Jianhua Liu,et al.  Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres , 2007 .

[8]  K. Hu,et al.  The microwave electromagnetic and absorption properties of some porous iron powders , 2007 .

[9]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[10]  T. Sen,et al.  Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. , 2006, Journal of the American Chemical Society.

[11]  Chunyi Zhi,et al.  Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite , 2006 .

[12]  Jiurong Liu,et al.  Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites , 2005 .

[13]  Daihua Zhang,et al.  Single crystalline magnetite nanotubes. , 2005, Journal of the American Chemical Society.

[14]  J. Tour,et al.  Magnetite (Fe3O4) Core−Shell Nanowires: Synthesis and Magnetoresistance , 2004 .

[15]  Y. J. Chen,et al.  Microwave absorption properties of the ZnO nanowire-polyester composites , 2004 .

[16]  Qing Chen,et al.  Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes , 2004 .

[17]  A. Wadhawan,et al.  Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes , 2003 .

[18]  D. W. Erickson,et al.  Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications , 2003 .

[19]  P. Watts,et al.  High Permittivity from Defective Multiwalled Carbon Nanotubes in the X‐Band , 2003 .

[20]  Hao Zeng,et al.  Exchange-coupled nanocomposite magnets by nanoparticle self-assembly , 2002, Nature.

[21]  A. Sarychev,et al.  Dielectric properties of fiber-filled composites , 1998 .

[22]  A. N. Yusoff,et al.  Frequency dependence of the complex impedances and dielectric behaviour of some Mg-Zn ferrites , 1997 .

[23]  A. Hippel,et al.  DIELECTRIC SPECTROSCOPY OF FERROMAGNETIC SEMICONDUCTORS , 1957 .

[24]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .

[25]  E. Verwey,et al.  Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures , 1939, Nature.