On torsion torsionfree triples
暂无分享,去创建一个
[1] M. Bridger,et al. Stable Module Theory , 1969 .
[2] H. Krause. On Neeman's Well Generated Triangulated Categories , 2001 .
[3] The bar derived category of a curved dg algebra , 2007, math/0702449.
[4] Marco Porta. The Popescu-Gabriel theorem for triangulated categories , 2007, 0706.4458.
[5] B. Keller. DERIVED CATEGORIES AND TILTING , 2004 .
[6] Cohomological quotients and smashing localizations , 2003, math/0308291.
[7] S. E. Dickson. A torsion theory for Abelian categories , 1966 .
[8] H. Bass. Finitistic dimension and a homological generalization of semi-primary rings , 1960 .
[9] A. Neeman,et al. The chromatic tower for D(R) , 1992 .
[10] Bernhard Keller,et al. Dualite de Grothendieck-Roos et basculement , 1988 .
[11] B. Toën. The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.
[12] Jeremy Rickard,et al. Morita Theory for Derived Categories , 1989 .
[13] Daniel Murfet,et al. Abelian Categories , 2006 .
[14] I. Reiten,et al. Stable equivalence of dualizing R-varieties* , 1974 .
[15] P. Cohn. Free rings and their relations , 1973 .
[16] Bernhard Keller,et al. On differential graded categories , 2006, math/0601185.
[17] W. Dwyer,et al. Complete modules and torsion modules , 2002 .
[18] H. Krause. A Brown representability theorem via coherent functors , 2002 .
[19] J. Verdier,et al. Des catégories dérivées des catégories abéliennes , 1996 .
[20] J. Rada,et al. Reflective subcategories , 2000, Glasgow Mathematical Journal.
[21] Tamotsu Ikeyama. Splitting torsion theories , 1980 .
[22] Alexander Grothendieck,et al. Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents , 1961 .
[23] M. J. S. Salorio. On the cogeneration of t-structures , 2004 .
[24] Tilting Modules Arising from Ring Epimorphisms , 2008, 0804.1313.
[25] Apostolos Beligiannis. The homological theory of contravariantly finite subcategories:auslander-buchweitz contexts, gorenstein categories and (co-)stabilization , 2000 .
[26] Andreas Heider. Two results from Morita theory of stable model categories , 2007, 0707.0707.
[27] D. Ravenel. Localization with Respect to Certain Periodic Homology Theories , 1984 .
[28] A. Schofield. Representations of Rings Over Skew Fields , 1985 .
[29] P. Webb. REPRESENTATION THEORY OF ARTIN ALGEBRAS (Cambridge Studies in Advanced Mathematics 36) By Maurice Auslander, Idun Reiten and Sverre O. Smalø: 423 pp., £50.00, ISBN 0 521 41134 3 (Cambridge University Press, 1995). , 1997 .
[30] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[31] J. V. Quereau. Some aspects of torsion. , 1954, A M A Archives of Ophthalmology.
[32] Philip S. Hirschhorn. Model categories and their localizations , 2003 .
[33] A. Schofield,et al. On semihereditary rings , 1988 .
[34] M. Auslander,et al. Preprojective modules over artin algebras , 1980 .
[35] David Pauksztello. Homological Epimorphisms of Differential Graded Algebras , 2007, 0705.0118.
[36] J. O'neill. On direct products of modules , 1984 .
[37] Askar A. Tuganbaev,et al. Rings of quotients , 1998 .
[38] A. Neeman,et al. Additivity for derivator K-theory , 2008 .
[39] Maurice Auslander,et al. Representation Theory of Artin Algebras: Notation , 1995 .
[40] E. Lady. A COURSE IN HOMOLOGICAL ALGEBRA , 2022 .
[41] P. Gabriel,et al. Representations of Finite-Dimensional Algebras , 1992 .
[42] J. Rada,et al. Rings characterized by (pre)envelopes and (pre)covers of their modules , 1998 .
[43] Masaki Kashiwara,et al. Sheaves on Manifolds , 1990 .
[44] Idun Reiten,et al. Homological and Homotopical Aspects of Torsion Theories , 2007 .
[45] Bernhard Keller,et al. Deriving DG categories , 1994 .
[46] E Cline At Worcester,et al. Journal Fur Die Reine Und Angewandte Mathematik Finite Dimensional Algebras and Highest Weight Categories ') , 2022 .
[47] J. Milnor. On axiomatic homology theory. , 1962 .
[48] B. Keller. On the cyclic homology of exact categories , 1999 .
[49] K. Nishida. On tilted algebras , 1983 .
[50] E. Skljarenko. PURE AND FINITELY PRESENTABLE MODULES, DUALITY HOMOMORPHISMS AND THE COHERENCE PROPERTY OF A RING , 1978 .
[51] C. Ringel. Tame Algebras and Integral Quadratic Forms , 1985 .
[52] I. Reiten,et al. Tilting in Abelian Categories and Quasitilted Algebras , 1996 .
[53] Dieter Happel,et al. On the derived category of a finite-dimensional algebra , 1987 .
[54] Classification of split torsion torsionfree triples in module categories , 2005, math/0511159.
[55] H. Lenzing,et al. Perpendicular Categories with Applications to Representations and Sheaves , 1991 .
[56] S. I. Gelʹfand,et al. Methods of Homological Algebra , 1996 .
[57] B. Keller. On the construction of triangle equivalences , 1998 .
[58] Apostolos Beligiannis,et al. Left triangulated categories arising from contravariantly finite subcategories , 1994 .
[59] B. Keller. Chain complexes and stable categories , 1990 .
[60] Steffen König. Tilting complexes, perpendicular categories and recollements of derived module categories of rings , 1991 .
[61] E. Enochs. Injective and flat covers, envelopes and resolvents , 1981 .
[62] G. Azumaya. Some properties of TTF-classes , 1973 .
[63] Bernhard Keller,et al. Derived Categories and Their Uses , 1996 .
[64] W. Tholen,et al. Semi-abelian categories , 2002 .
[65] M. Kapranov,et al. ENHANCED TRIANGULATED CATEGORIES , 1991 .
[66] Frank W. Anderson,et al. Rings and Categories of Modules , 1974 .
[67] Leovigildo Alonso Tarrío,et al. Localization in Categories of Complexes and Unbounded Resolutions , 2000 .
[68] H. Krause. Smashing subcategories and the telescope conjecture – an algebraic approach , 2000 .
[69] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[70] K. Brüning. Subcategories of Triangulated Categories and the Smashing Conjecture , 2007 .
[71] Pu Zhang,et al. Triangulated Categories , 2021, Homological Theory of Representations.
[72] P. Gabriel,et al. Des catégories abéliennes , 1962 .
[73] Jianlong Chen,et al. Relative coherence and preenvelopes , 1993 .
[74] A. Neeman. The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , 1992 .
[75] S. López-Permouth,et al. On the Goldie Dimension of Rings and Modules , 2006 .
[76] NONCOMMUTATIVE LOCALIZATION AND CHAIN COMPLEXES I. ALGEBRAIC K- AND L-THEORY , 2001, math/0109118.
[77] Apostolos Beligiannis,et al. HOMOTOPY THEORY OF MODULES AND GORENSTEIN RINGS , 2001 .
[78] A. Neeman,et al. Homotopy limits in triangulated categories , 1993 .
[79] Pedro Nicolás,et al. Classification of split TTF-triples in module categories , 2007 .
[80] K. Goodearl. Singular torsion and the splitting properties , 1972 .
[81] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[82] Amnon Neeman,et al. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .
[83] B. Keller. A remark on the generalized smashing conjecture , 1994 .
[84] Stephen Lack,et al. Categories in Algebra, Geometry and Mathematical Physics , 2007 .
[85] Goncalo Tabuada. Une structure de catgorie de modles de Quillen sur la catgorie des dg-catgories , 2005 .
[86] Birgit Huber. Realisability and Localisation , 2007, 0707.1148.
[87] Peter Gabriel,et al. Calculus of Fractions and Homotopy Theory , 1967 .
[88] Towers of recollement and bases for diagram algebras: Planar diagrams and a little beyond , 2006, math/0610971.
[89] A. K. Bowsfield. THE LOCALIZATION OF SPECTRA WITH RESPECT TO HOMOLOGY , 2001 .
[90] M. Teply. Homological dimension and splitting torsion theories , 1970 .
[91] T. Porter. TRIANGULATED CATEGORIES (Annals of Mathematics Studies 148) By A MNON N EEMAN : 449 pp., £22.95, ISBN 0-691-08686-9 (Princeton University Press, 2001). , 2002 .
[92] A. Kuku,et al. Higher Algebraic K-Theory , 2006 .
[93] E. A. Rutter,et al. SEMI-PERFECT QF-3 AND PP-RINGS , 1968 .