Depth map color constancy

Abstract A human observer is able to determine the color of objects independent of the light illuminating these objects. This ability is known as color constancy. In the first stages of visual information processing, data are analyzed with respect to wavelength composition, orientation, motion, and depth. With this contribution, we investigate whether depth information can help in estimating the color of the objects. We assume that local space average color is computed in V4 through resistively coupled neurons to estimate the color of the illuminant. We show how this computational model can be extended to incorporate depth information.

[1]  Brian V. Funt,et al.  Color Constancy for Scenes with Varying Illumination , 1997, Comput. Vis. Image Underst..

[2]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[3]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[4]  K. Hohn,et al.  Determining Lightness from an Image , 2004 .

[5]  Michael Riis Andersen,et al.  Kinect Depth Sensor Evaluation for Computer Vision Applications , 2012 .

[6]  M. Tovée,et al.  An Introduction to the Visual System , 1997 .

[7]  J. J. McCann Simultaneous Contrast and Color Constancy: Signatures of Human Image Processing , 2008 .

[8]  Marc Ebner,et al.  A Computational Model for Color Perception , 2012, Bio Algorithms Med Syst..

[9]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[10]  De Xu,et al.  Color constancy using 3D scene geometry , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[12]  Rodney M. Goodman,et al.  A real-time neural system for color constancy , 1991, IEEE Trans. Neural Networks.

[13]  Brian V. Funt,et al.  Committee-Based Color Constancy , 1999, CIC.

[14]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Richard Szeliski,et al.  Computer Vision , 2010 .

[16]  S. Zeki A vision of the brain , 1993 .

[17]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[18]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ran Gilad-Bachrach,et al.  Full body gait analysis with Kinect , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[23]  E H Land,et al.  An alternative technique for the computation of the designator in the retinex theory of color vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Andrew Blake,et al.  Boundary conditions for lightness computation in Mondrian World , 1985, Comput. Vis. Graph. Image Process..

[25]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  S. McKee,et al.  Quantitative studies in retinex theory a comparison between theoretical predictions and observer responses to the “color mondrian” experiments , 1976, Vision Research.

[27]  Mark S. Drew,et al.  Color constancy from mutual reflection , 1991, International Journal of Computer Vision.

[28]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[29]  Jeanny Hérault A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena , 1996, Neurocomputing.

[30]  J. Rabin The Retina: An Approachable Part of the Brain , 2013 .

[31]  G D Finlayson,et al.  Color constancy at a pixel. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Marc Ebner Estimating the Color of the Illuminant Using Anisotropic Diffusion , 2007, CAIP.

[33]  Marc Ebner,et al.  Color constancy based on local space average color , 2009, Machine Vision and Applications.

[34]  M. Tovee Comprar An Introduction To The Visual System | M. Tovee | 9780521709644 | Cambridge University Press , 2008 .

[35]  T. Poggio,et al.  Synthesizing a color algorithm from examples. , 1988, Science.

[36]  John M. Arthur Some Effects of Radiant Energy on Plants , 1929 .

[37]  Marc Ebner How Does the Brain Arrive at a Color Constant Descriptor? , 2007, BVAI.

[38]  Theo Gevers,et al.  Color Constancy for Multiple Light Sources , 2012, IEEE Transactions on Image Processing.

[39]  Marc Ebner A parallel algorithm for color constancy , 2004, J. Parallel Distributed Comput..

[40]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[41]  Brian V. Funt,et al.  Learning Color Constancy , 1996, CIC.

[42]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[43]  Berthold K. P. Horn,et al.  Determining lightness from an image , 1974, Comput. Graph. Image Process..

[44]  Marc Ebner,et al.  Color Constancy , 2007, Computer Vision, A Reference Guide.

[45]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[46]  Brian V. Funt,et al.  A comparison of computational color constancy Algorithms. II. Experiments with image data , 2002, IEEE Trans. Image Process..

[47]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .