Data and monitoring needs for a more ecological agriculture

Information on the life-cycle environmental impacts of agricultural production is often limited. As demands grow for increasing agricultural output while reducing its negative environmental impacts, both existing and novel data sources can be leveraged to provide more information to producers, consumers, scientists and policy makers. We review the components and organization of an agroecological sensor web that integrates remote sensing technologies and in situ sensors with models in order to provide decision makers with effective management options at useful spatial and temporal scales for making more informed decisions about agricultural productivity while reducing environmental burdens. Several components of the system are already in place, but by increasing the extent and accessibility of information, decision makers will have the opportunity to enhance food security and environmental quality. Potential roadblocks to implementation include farmer acceptance, data transparency and technology deployment.

[1]  G. Fedosejevs,et al.  An integrated Earth sensing sensorweb for improved crop and rangeland yield predictions , 2007 .

[2]  S. Fountas,et al.  A model of decision-making and information flows for information-intensive agriculture , 2006 .

[3]  R. G. Evans,et al.  Opportunities for conservation with precision irrigation , 2005 .

[4]  G. Grolleau,et al.  Can Ecolabeling Schemes Preserve the Environment? , 2008 .

[5]  C. N. Hodges,et al.  Radically Rethinking Agriculture for the 21st Century , 2010, Science.

[6]  Robin Gebbers,et al.  Precision Agriculture and Food Security , 2010, Science.

[7]  M. T. Smith,et al.  Provision of irrigation scheduling advice to small‐scale sugarcane farmers using a web‐based crop model and cellular technology: a South African case study , 2006 .

[8]  Julian M. Alston,et al.  Agricultural Research, Productivity, and Food Prices in the Long Run , 2009, Science.

[9]  Sotiris Karetsos,et al.  Web and mobile technologies in a prototype DSS for major field crops , 2010 .

[10]  Stan G. Daberkow,et al.  Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture Technologies in the US , 2003, Precision Agriculture.

[11]  T. Harmon,et al.  Environmental sensor networks in ecological research. , 2009, The New phytologist.

[12]  Paul D. Colaizzi,et al.  Water Stress Detection Under High Frequency Sprinkler Irrigation with Water Deficit Index , 2003 .

[13]  Achim Dobermann,et al.  Geostatistical Integration of Yield Monitor Data and Remote Sensing Improves Yield Maps , 2004 .

[14]  Michael Piasecki,et al.  Prototype System for Multidisciplinary Shared Cyberinfrastructure: Chesapeake Bay Environmental Observatory , 2008 .

[15]  David B. Lindenmayer,et al.  The science and application of ecological monitoring , 2010 .

[16]  Matthew J. Kotchen,et al.  Green Markets and Private Provision of Public Goods , 2006, Journal of Political Economy.

[17]  Philippe Ciais,et al.  Spaceborne remote sensing of greenhouse gas concentrations , 2010 .

[18]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[19]  K. Sudduth,et al.  Soil macronutrient sensing for precision agriculture. , 2009, Journal of environmental monitoring : JEM.

[20]  N. Batjes Harmonized soil profile data for applications at global and continental scales: updates to the WISE database , 2009 .

[21]  Sylvain Payraudeau,et al.  Environmental impact assessment for a farming region: a review of methods , 2005 .

[22]  N. Ramankutty,et al.  Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000 , 2008 .

[23]  Christopher O. Justice,et al.  Developing a strategy for global agricultural monitoring in the framework of group on earth observations (GEO) Workshop Report , 2007 .

[24]  Xavier Blaes,et al.  Efficiency of crop identification based on optical and SAR image time series , 2005 .

[25]  D. Baldocchi ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems , 2008 .

[26]  C. Kucharik Evaluation of a Process-Based Agro-Ecosystem Model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the Interannual Variability in Maize Yield , 2003 .

[27]  Jeffrey W Hollister,et al.  Beyond data management: how ecoinformatics can benefit environmental monitoring programs , 2008, Environmental monitoring and assessment.

[28]  Ralf Bill,et al.  Applications of open geospatial web services in precision agriculture: a review , 2009, Precision Agriculture.

[29]  S. Robinson,et al.  Food Security: The Challenge of Feeding 9 Billion People , 2010, Science.

[30]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[31]  S. Hamilton,et al.  Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits , 2007 .

[32]  Paul C. West,et al.  Intuitive simulation, querying, and visualization for river basin policy and management , 2009, IBM J. Res. Dev..

[33]  Ning Wang,et al.  Review: Wireless sensors in agriculture and food industry-Recent development and future perspective , 2006 .

[34]  N. Ramankutty,et al.  Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 , 2008 .

[35]  Mutlu Ozdogan,et al.  The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis , 2010 .

[36]  Heather McNairn,et al.  Evaluation of soil moisture derived from passive microwave remote sensing over agricultural sites in Canada using ground-based soil moisture monitoring networks , 2010 .

[37]  L. Opara,et al.  Food Traceability from Field to Plate , 2001 .

[38]  B. Fulkerson,et al.  Soil Sensor Technology: Life within a Pixel , 2007 .

[39]  J. Sinfield,et al.  Review: Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils , 2010 .

[40]  William W. Hargrove,et al.  A continental strategy for the National Ecological Observatory Network , 2008 .

[41]  Richard Han,et al.  Perspectives on next‐generation technology for environmental sensor networks , 2010 .

[42]  Scott M. Swinton,et al.  Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture , 2005 .

[43]  L. Hoffmann,et al.  Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy , 2010 .

[44]  Pierre Defourny,et al.  A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing , 2010 .

[45]  James W. Jones,et al.  The DSSAT cropping system model , 2003 .

[46]  N. Ramankutty,et al.  Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production , 2010 .

[47]  N. Ziadi,et al.  Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: a review. , 2009 .

[48]  Gene E. Likens,et al.  Who needs environmental monitoring , 2007 .

[49]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[50]  Li Li,et al.  A solar-powered wireless cell for dynamically monitoring soil water content , 2009 .

[51]  S. Running,et al.  A continuous satellite‐derived global record of land surface evapotranspiration from 1983 to 2006 , 2010 .

[52]  Kingsley Dennis,et al.  Viewpoint: Keeping a Close Watch – The Rise of Self-Surveillance and the Threat of Digital Exposure , 2008 .

[53]  C. G. McLaren,et al.  Chapter 4 Informatics in Agricultural Research for Development , 2009 .

[54]  Jean-Gabriel Ganascia,et al.  The generalized sousveillance society , 2010 .

[55]  Xiang Li,et al.  Using sensor web protocols for environmental data acquisition and management , 2010, Ecol. Informatics.

[56]  Edward C. Luschei,et al.  Technology, complexity and change in agricultural production systems , 2008, Renewable Agriculture and Food Systems.

[57]  Viacheslav I. Adamchuk,et al.  On-the-go soil sensors for precision agriculture , 2004 .

[58]  C. D. Christy,et al.  Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy , 2008 .

[59]  Newell R. Kitchen,et al.  Emerging technologies for real-time and integrated agriculture decisions , 2008 .

[60]  D. J. Greenwood,et al.  Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology , 2009, The Journal of Agricultural Science.

[61]  Kenton W. Ross,et al.  Review of Intra-Field Yield Estimation from Yield Monitor Data , 2008 .

[62]  A. Robock,et al.  The Global Soil Moisture Data Bank , 2000 .

[63]  A. Janvry,et al.  World development report 2008 : agriculture for development , 2008 .

[64]  Yuan Shen,et al.  Large-area rice yield forecasting using satellite imageries , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[65]  James Sumberg,et al.  Constraints to the Adoption of Agricultural Innovations , 2005 .

[66]  Mercedes Bleda,et al.  Graded eco-labels: A demand-oriented approach to reduce pollution , 2009 .

[67]  G. Fischer,et al.  Effects of climate change on global food production under SRES emissions and socio-economic scenarios , 2004 .

[68]  F. J. Pierce,et al.  Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington , 2008 .

[69]  Raja Jurdak,et al.  Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks , 2008, Sensors.

[70]  R. G. V. Bramley,et al.  Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application , 2009 .

[71]  G. Pan,et al.  Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture , 2007 .

[72]  Heather McNairn,et al.  Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories , 2009 .

[73]  Peter Adams,et al.  Improving pathways to adoption: Putting the right P's in precision agriculture , 2008 .

[74]  Patricia Allen,et al.  Beyond Organic and Fair Trade? An Analysis of Ecolabel Preferences in the United States , 2010 .

[75]  Magnus Nyström,et al.  Can web crawlers revolutionize ecological monitoring , 2010 .

[76]  S. Polasky,et al.  Measures of the effects of agricultural practices on ecosystem services , 2007 .

[77]  Thomas Usländer,et al.  Designing environmental software applications based upon an open sensor service architecture , 2010, Environ. Model. Softw..

[78]  Erle C. Ellis,et al.  Putting people in the map: anthropogenic biomes of the world , 2008 .

[79]  A. McMichael,et al.  Ecosystems and Human well-being , 2003 .

[80]  Terence L. van Zyl,et al.  The Sensor Web: systems of sensor systems , 2009, Int. J. Digit. Earth.

[81]  Lammert Kooistra,et al.  Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach , 2009, Sensors.

[82]  José Rafael Marques da Silva,et al.  Mapping soil and pasture variability with an electromagnetic induction sensor , 2010 .

[83]  Calvin D. Perry,et al.  A real-time wireless smart sensor array for scheduling irrigation , 2008 .

[84]  Peter Arzberger,et al.  New Eyes on the World: Advanced Sensors for Ecology , 2009 .

[85]  Yang Yang,et al.  Remote Sensing of Irrigated Agriculture: Opportunities and Challenges , 2010, Remote. Sens..