Some properties for certain generalized tracial approximated ${\rm C^*}$-algebras

In this paper, we introduce a class of generalized tracial approximation Calgebras. Let P be a class of unital C-algebras which have tracially Z-absorbing (tracial nuclear dimension at most n, SP property, m-almost divisible, weakly (m,n)-divisible). Then A has tracially Z-absorbing (tracial nuclear dimension at most n, SP property, weakly m-almost divisible, secondly weakly (m,n)-divisible) for any simple unital Calgebra A in the class of this generalized tracial approximation C-algebras. As an application, Let A be an infinite dimensional unital simple C-algebra, and let B be a centrally large subalgebra of A. If B is tracially Z-absorbing, then A is tracially Z-absorbing. This result was obtained by Archey, Buck and Phillips in [2].

[1]  Alex Kumjian,et al.  Crossed products of Cuntz algebras by quasi-free automorphisms , 2009 .

[2]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[3]  L. Robert,et al.  Divisibility properties for C*‐algebras , 2011, 1106.5523.

[4]  N. Phillips The C*-algebra of a minimal homeomorphism with finite mean dimension has finite radius of comparison , 2016, 1605.07976.

[5]  Nathanial P. Brown,et al.  The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras , 2006, math/0609182.

[6]  Huaxin Lin An Introduction to the Classification of Amenable C-Algebras , 2001 .

[7]  A. Tikuisis,et al.  Quasidiagonality of nuclear C*-algebras , 2015, 1509.08318.

[8]  G. Pedersen,et al.  Equivalence and traces on C∗-algebras , 1979 .

[9]  G. Elliott,et al.  The Cuntz semigroup as an invariant for C*-algebras , 2007, 0705.0341.

[10]  George A. Elliott,et al.  On the classification of C*-algebras of real rank zero. , 1993 .

[11]  George A. Elliott,et al.  On the classification of inductive limits of sequences of semisimple finite-dimensional algebras , 1976 .

[12]  E. Kirchberg,et al.  Central sequence C*-algebras and tensorial absorption of the Jiang-Su algebra , 2012, 1209.5311.

[13]  Andrew S. Toms,et al.  K-Theory for operator algebras. Classification of C$^*$-algebras , 2009, 0902.3381.

[14]  Z. Niu Comparison radius and mean topological dimension: Rokhlin property, comparison of open sets, and subhomogeneous C*-algebras , 2019, Journal d'Analyse Mathématique.

[15]  Andrew S. Toms On the classification problem for nuclear C^*-algebras , 2005, math/0509103.

[16]  Wilhelm Winter,et al.  The Jiang–Su algebra revisited , 2008, 0801.2259.

[17]  Huaxin Lin,et al.  Classification of finite simple amenable ${\cal Z}$-stable $C^*$-algebras , 2014, 1501.00135.

[18]  Mikael Rørdam,et al.  Approximately Central Matrix Units and the Structure of Noncommutative Tori , 1992 .

[19]  X. Fang The classification of certain non-simple C∗-algebras of tracial rank zero , 2009 .

[20]  M. Rørdam On the structure of simple C∗-algebras tensored with a UHF-algebra, II , 1991 .

[21]  W. Winter Nuclear dimension and -stability of pure C ∗ -algebras , 2010, 1006.2731.

[22]  The tracial Rokhlin property for actions of finite groups on C*-algebras , 2006, math/0609782.

[23]  Yasuhiko Sato Trace spaces of simple nuclear C*-algebras with finite-dimensional extreme boundary , 2012, 1209.3000.

[24]  Mikael Rordam,et al.  The stable and the real rank of Z-absorbing C*-algebras , 2004 .

[25]  Classification of simple C*-algebras of tracial topological rank zero , 2000, math/0011079.

[26]  F. Perera,et al.  The Corona Factorization property, Stability, and the Cuntz semigroup of a C*-algebra , 2009, 0903.2917.

[27]  Huaxin Lin The Tracial Topological Rank of C*‐Algebras , 2001 .

[28]  Huaxin Lin Asymptotically Unitary Equivalence and Classification of Simple Amenable C*-algebras , 2008, 0806.0636.

[29]  Ilan Hirshberg,et al.  Tracially Z-absorbing C*-algebras , 2012, 1208.2444.

[30]  G. Elliott,et al.  On the classification of C*-algebras of real rank zero, V , 1996, 1811.06758.

[31]  A. Kishimoto The Rohlin Property for Shifts on UHF Algebras and Automorphisms of Cuntz Algebras , 1996 .

[32]  Andrew S. Toms,et al.  The Cuntz Semigroup , 2018 .

[33]  G. Elliott,et al.  On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem , 2007 .

[34]  Hannes Thiel,et al.  THE CUNTZ SEMIGROUP AND COMPARISON OF OPEN PROJECTIONS , 2010, 1008.3497.

[35]  G. Gong On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem , 2002, Documenta Mathematica.

[36]  A. Tikuisis,et al.  Covering Dimension of C*-Algebras and 2-Coloured Classification , 2015, Memoirs of the American Mathematical Society.

[37]  A. Tikuisis,et al.  Nuclear dimension and Z-stability of non-simple C*-algebras , 2013, 1308.2941.

[38]  Covering dimension for nuclear C∗-algebras , 2001, math/0107218.

[39]  Wilhelm Winter,et al.  Decomposition rank and Z-stability , 2008, 0806.2948.

[40]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[41]  N. Christopher Phillips,et al.  Crossed products by minimal homeomorphisms , 2004, math/0408291.

[42]  M. Rørdam Classification of Certain Infinite Simple C*-Algebras , 1995 .

[43]  Andrew S. Toms,et al.  Regularity properties in the classification program for separable amenable C*-algebras , 2007, 0704.1803.