Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells

We study the solar power conversion efficiency in hybrid solar cells based on zinc oxide (ZnO)/antimony trisulfide (Sb2S3)/poly-3(hexylthiophene) heterojunctions. The incorporation of ZnO nanowire arrays (NAs) structure results in power conversion efficiency of 2.9%, or 20% higher than the control device. Absorption spectra and numerical simulation analysis provide strong evidence revealing that the enhanced performance is mainly induced by (1) enhanced optical absorption from light-trapping effect of NAs and (2) reduced bulk recombination rate in Sb2S3 from shortened electron injection pathway into ZnO. Significantly, numerical simulations show that the expected interface recombination increase from larger interfacial area effects is negligible.

[1]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[2]  A. Gabr,et al.  Space-charge limited conduction in vacuum-deposited Sb2S3 films , 1987 .

[3]  Gary Hodes,et al.  Sb2S3-Sensitized Nanoporous TiO2 Solar Cells , 2009 .

[4]  I. Bello,et al.  Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions , 2012 .

[5]  J. Bisquert,et al.  Hole Transport and Recombination in All-Solid Sb2S3-Sensitized TiO2 Solar Cells Using CuSCN As Hole Transporter , 2012 .

[6]  Stephen J. Fonash,et al.  Range of validity of the surface‐photovoltage diffusion length measurement: A computer simulation , 1988 .

[7]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[8]  S. Komarneni,et al.  Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics. , 2012, Chemical communications.

[9]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[10]  K. Mandal,et al.  Low Cost Schottky Barrier Solar Cells Fabricated on CdSe and Sb2 S 3 Films Chemically Deposited with Silicotungstic Acid , 1994 .

[11]  Jun-Ho Yum,et al.  Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor , 2010 .

[12]  J. Haber,et al.  Structural and optical properties of amorphous and crystalline antimony sulfide thin-films , 2007 .

[13]  Amit Lal,et al.  High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. , 2010, Nano letters.

[14]  Brian A. Gregg,et al.  Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation , 2003 .

[15]  Zhong Lin Wang,et al.  One-dimensional ZnO nanostructures: Solution growth and functional properties , 2011 .

[16]  Th. Dittrich,et al.  Effect of internal surface area on the performance of ZnO∕In2S3∕CuSCN solar cells with extremely thin absorber , 2008 .

[17]  G. Larramona,et al.  Light Soaking and Gas Effect on Nanocrystalline TiO2/Sb2S3/CuSCN Photovoltaic Cells following Extremely Thin Absorber Concept , 2010 .

[18]  Stephen J. Fonash,et al.  Homojunction Solar Cells , 2010 .

[19]  Wenjun Zhang,et al.  ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector , 2010 .

[20]  Wook Jun Nam,et al.  Modeling of bulk and bilayer organic heterojunction solar cells , 2010 .

[21]  Kazuhito Hashimoto,et al.  Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer , 2008 .

[22]  J. Nelson The physics of solar cells , 2003 .