Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses

Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to ~ 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices.

[1]  Yoshichika Otani,et al.  Controlled propagation of locally excited vortex dynamics in linear nanomagnet arrays , 2010 .

[2]  Lars Bocklage,et al.  Time-resolved x-ray microscopy of spin-torque-induced magnetic vortex gyration. , 2008, Physical review letters.

[3]  C. Back,et al.  Magnetic vortex core reversal by excitation of spin waves , 2010, Nature communications.

[4]  H. Ohno,et al.  Current-induced domain-wall switching in a ferromagnetic semiconductor structure , 2004, Nature.

[5]  Young-Sang Yu,et al.  Low-Power Selective Control of Ultrafast Vortex-Core Switching by Circularly Rotating Magnetic Fields: Circular–Rotational Eigenmodes , 2008, IEEE Transactions on Magnetics.

[6]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[7]  K. Guslienko,et al.  Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. , 2007, Physical review letters.

[8]  K. Guslienko,et al.  Ultrafast vortex-core reversal dynamics in ferromagnetic nanodots , 2007, cond-mat/0703538.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  A. Barman,et al.  Dynamics of coupled vortices in a pair of ferromagnetic disks. , 2010, Physical review letters.

[11]  E. Anderson,et al.  Soft X-ray microscopy of nanomagnetism , 2006 .

[12]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[13]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[14]  Young-Sang Yu,et al.  Universal criterion and phase diagram for switching a magnetic vortex core in soft magnetic nanodots. , 2008, Physical review letters.

[15]  Hyunsung Jung,et al.  Observation of coupled vortex gyrations by 70-ps-time and 20-nm-space- resolved full-field magnetic transmission soft x-ray microscopy , 2010 .

[16]  K. Buchanan,et al.  Magnetic vortex resonance in patterned ferromagnetic dots , 2005 .

[17]  Teruo Ono,et al.  Current-driven resonant excitation of magnetic vortices. , 2006, Physical review letters.

[18]  R Divan,et al.  Magnetic vortex core dynamics in cylindrical ferromagnetic dots. , 2006, Physical review letters.

[19]  Teruo Ono,et al.  Electrical switching of the vortex core in a magnetic disk. , 2007, Nature materials.

[20]  T. Tyliszczak,et al.  X-ray imaging of the dynamic magnetic vortex core deformation , 2008, 0811.1348.

[21]  Russell P Cowburn,et al.  Spintronics. Change of direction. , 2007, Nature materials.

[22]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[23]  I. N. Krivorotov,et al.  Magnetic vortex oscillator driven by d.c. spin-polarized current , 2007, cond-mat/0702253.

[24]  Young-Sang Yu,et al.  Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents , 2010, 1010.3061.

[25]  J. P. Park,et al.  Imaging of spin dynamics in closure domain and vortex structures , 2002, cond-mat/0208572.

[26]  Arne Vansteenkiste,et al.  Vortex core switching by coherent excitation with single in-plane magnetic field pulses. , 2008, Physical review letters.

[27]  Sang-Koog Kim,et al.  Gyrotropic linear and nonlinear motions of a magnetic vortex in soft magnetic nanodots , 2007 .

[28]  A. Scholl,et al.  Vortex Core-Driven Magnetization Dynamics , 2004, Science.

[29]  Sang-Koog Kim,et al.  Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. , 2008, Physical review letters.

[30]  B. A. Ivanov,et al.  Eigenfrequencies of vortex state excitations in magnetic submicron-size disks , 2001 .

[31]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[32]  Y. Gaididei,et al.  Nucleation of a vortex-antivortex pair in the presence of an immobile magnetic vortex , 2009 .

[33]  Y. Gaididei,et al.  Controlled vortex core switching in a magnetic nanodisk by a rotating field , 2007, 0705.2046.

[34]  A. Fert,et al.  Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. , 2010, Nature communications.

[35]  Ki-Suk Lee,et al.  Two circular-rotational eigenmodes and their giant resonance asymmetry in vortex gyrotropic motions in soft magnetic nanodots , 2008 .

[36]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[37]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[38]  Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. , 2009 .

[39]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[40]  Jimi R. Michalscheck Change of direction. , 2010, Occupational health & safety.

[41]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[42]  R. Hertel,et al.  Ultrafast nanomagnetic toggle switching of vortex cores. , 2007, Physical review letters.

[43]  D. L. Huber,et al.  Dynamics of spin vortices in two-dimensional planar magnets , 1982 .

[44]  Guido Meier,et al.  Coupled vortex oscillations in spatially separated permalloy squares. , 2011, Physical review letters.

[45]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[46]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[47]  K. Guslienko,et al.  Electric-current-driven vortex-core reversal in soft magnetic nanodots , 2007 .

[48]  C. Rettner,et al.  Current-Controlled Magnetic Domain-Wall Nanowire Shift Register , 2008, Science.

[49]  Gang Xiong,et al.  Submicrometer Ferromagnetic NOT Gate and Shift Register , 2002, Science.

[50]  K. Guslienko,et al.  Dynamic origin of vortex core switching in soft magnetic nanodots. , 2007, Physical review letters.

[51]  Hyunsung Jung,et al.  Memory-bit selective recording in vortex-core cross-point architecture , 2010 .

[52]  I. Mönch,et al.  Nanosecond time-scale switching of permalloy thin film elements studied by wide-field time-resolved Kerr microscopy , 2005 .

[53]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[54]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.