On a Robust Modeling of Piezo-Systems

This paper proposes a new modeling approach which is experimentally validated on piezo-electric systems in order to provide a robust Black-box model for complex systems control. Industrial applications such as vibration control in machining and active suspension in transportation should be concerned by the results presented here. Generally one uses physical based approaches. These are interesting as long as the user cares about the nature of the system. However, sometimes complex phenomena occur in the system while there is not sufficient expertise to explain them. Therefore, we adopt identification methods to achieve the modeling task. Since the microdisplacements of the piezo-system sometimes generate corrupted data named observation outliers leading to large estimation errors, we propose a parameterized robust estimation criterion based on a mixed L2 – L1 norm with an extended range of a scaling factor to tackle efficiently these outliers. This choice is motivated by the high sensitivity of least-squares methods to the large estimation errors. Therefore, the role of the L1-norm is to make the L2-estimator more robust. Experimental results are presented and discussed. [DOI: 10.1115/1.4005499]

[1]  Changyun Wen,et al.  Adaptive Backstepping Control of Uncertain Systems with Unknown Input Time-Delay , 2008 .

[2]  Khalil Maurice Nasser Development and Analysis of the Lumped Parameter Model of a Piezo-Hydraulic Actuator , 2000 .

[3]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[4]  Manfred R. Schroeder,et al.  Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[5]  Deuk-Young Han,et al.  Modeling and analysis of multilayer piezoelectric transformer , 2005 .

[6]  P. Caines,et al.  Asymptotic normality of prediction error estimators for approximate system models , 1980 .

[7]  Gianluca Piazza,et al.  Two-port stacked piezoelectric aluminum nitride contour-mode resonant MEMS , 2007 .

[8]  Sibnarayan Guria,et al.  Estimation of regression parameters in the presence of outliers in the response , 2009 .

[9]  Donald J. Leo,et al.  Energy Analysis of Piezoelectric-Actuated Structures Driven by Linear Amplifiers , 1999, Adaptive Structures and Material Systems.

[10]  M. Otto,et al.  Outliers in Time Series , 1972 .

[11]  Gianluca Piazza,et al.  One and Two Port Piezoelectric Higher Order Contour-Mode MEMS Resonators for Mechanical Signal Processing , 2007 .

[12]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  Wei Wang,et al.  Adaptive backstepping control of uncertain systems with unknown input time-delay , 2009, Autom..

[15]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[16]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[17]  K. Furuta Sliding mode control of a discrete system , 1990 .

[18]  Christopher S. Lynch,et al.  Piezoelectric hydraulic pump , 1999, Smart Structures.

[19]  Roland Hildebrand,et al.  Identification for control: optimal input design with respect to a worst-case /spl nu/-gap cost function , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  H. Akaike A new look at the statistical model identification , 1974 .

[21]  V. M. Alvarado,et al.  L1 - L2 robust estimation in prediction error system identification , 2009, 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[22]  G. A. Watson NONLINEAR APPROXIMATION THEORY (Springer Series in Computational Mathematics 7) , 1988 .

[23]  D. Braess Nonlinear Approximation Theory , 1986 .

[24]  D. O. O. Selca MODELING OF THE PIEZOELECTRIC EFFECT USING THE FINITE-ELEMENT METHOD ( FEM ) , 2010 .

[25]  Pertti Mäkilä,et al.  Modelling of uncertain systems via linear programming , 1993, Autom..

[26]  David Clarke,et al.  ADAPTIVE PREDICTIVE CONTROL , 1996 .

[27]  Andrea Garulli,et al.  Error bounds for conditional algorithms in restricted complexity set membership identification , 2000, IEEE Trans. Autom. Control..

[28]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[29]  Xavier Bombois,et al.  Input design: from open-loop to control-oriented design , 2006 .

[30]  Donald J. Leo,et al.  Efficiency of Frequency-Rectified Piezohydraulic and Piezopneumatic Actuation , 2000, Adaptive Structures and Material Systems.

[31]  Riccardo Marino,et al.  Adaptive control of nonlinear systems: Basic results and applications , 1995 .

[32]  Tao Liu,et al.  Robust Step-Like Identification of Low-Order Process Model Under Nonzero Initial Conditions and Disturbance , 2008, IEEE Transactions on Automatic Control.

[33]  David J. Spiegelhalter,et al.  A Simple Diagnostic Plot Connecting Robust Estimation, Outlier Detection, and False Discovery Rates , 2006 .

[34]  Ying Guo,et al.  Huber's M-estimation in GPS Positioning: Computational Aspects , 2004 .

[35]  Sylviane Gentil,et al.  Principes des chaînes de régulation , 2015, Automatique et ingénierie système.

[36]  Graham C. Goodwin,et al.  Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..

[37]  B. H. Krogh,et al.  State feedback control of condition/event systems , 1996 .

[38]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[39]  L. Ljung,et al.  On the choice of norms in system identification , 1994, IEEE Trans. Autom. Control..

[40]  F. Gouaisbaut,et al.  Robust control of delay systems: A sliding mode control design via LMI , 2001, ECC.