Inequalities for quantum entropy: A review with conditions for equality

This article presents self-contained proofs of the strong subadditivity inequality for von Neumann’s quantum entropy, S(ρ), and some related inequalities for the quantum relative entropy, most notably its convexity and its monotonicity under stochastic maps. Moreover, the approach presented here, which is based on Klein’s inequality and Lieb’s theorem that the function A→Tr eK+log A is concave, allows one to obtain conditions for equality. In the case of strong subadditivity, which states that S(ρ123)+S(ρ2)⩽S(ρ12)+S(ρ23) where the subscripts denote subsystems of a composite system, equality holds if and only if log ρ123=log ρ12−log ρ2+log ρ23. Using the fact that the Holevo bound on the accessible information in a quantum ensemble can be obtained as a consequence of the monotonicity of relative entropy, we show that equality can be attained for that bound only when the states in the ensemble commute. The article concludes with an Appendix giving a short description of Epstein’s elegant proof of Lieb’s the...

[1]  O. Klein Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre , 1931 .

[2]  Max Delbrück,et al.  Statistische Quantenmechanik und Thermodynamik , 1936 .

[3]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[4]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[5]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[6]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Derek W. Robinson,et al.  Mean Entropy of States in Quantum‐Statistical Mechanics , 1968 .

[8]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[9]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[10]  H. Epstein Remarks on two theorems of E. Lieb , 1973 .

[11]  E. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[12]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[13]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .

[14]  E. Lieb Some Convexity and Subadditivity Properties of Entropy , 1975 .

[15]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[16]  H. Araki Relative Entropy of States of von Neumann Algebras , 1975 .

[17]  J. Cooper MONOTONE MATRIX FUNCTIONS AND ANALYTIC CONTINUATION , 1976 .

[18]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[19]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[20]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[21]  A. Wehrl General properties of entropy , 1978 .

[22]  安藤 毅 Topics on operator inequalities , 1978 .

[23]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[24]  B. Simon Trace ideals and their applications , 1979 .

[25]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[26]  D. Petz Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .

[27]  Dénes Petz,et al.  A variational expression for the relative entropy , 1988 .

[28]  Mary Beth Ruskai,et al.  Convexity inequalities for estimating free energy and relative entropy , 1990 .

[29]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[30]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[31]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[32]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[33]  Michael J. W. Hall,et al.  QUANTUM INFORMATION AND CORRELATION BOUNDS , 1997 .

[34]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[35]  M. Ruskai,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[36]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[37]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[38]  C. King,et al.  Capacity of quantum channels using product measurements , 2001 .

[39]  D. Petz Entropy, von Neumann and the von Neumann Entropy , 2001 .

[40]  Christopher King,et al.  Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.

[41]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[42]  C. King Maximization of capacity and lp norms for some product channels , 2002 .

[43]  E. Lieb,et al.  A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy , 2007, math/0701352.

[44]  Tracy Lupher John von Neumann and the foundations of quantum physics , 2003 .

[45]  Elliott H. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .