Improving Microarray Spots Segmentation by K-Means driven Adaptive Image Restoration

Complementary DNA microarray experiments are used to study human genome. However, microarray images are corrupted by spatially inhomogeneous noise that deteriorates image and consequently gene expression. An adaptive microarray image restoration technique is developed by suitably combining unsupervised clustering with the restoration filters for boosting the performance of microarray spots segmentation and for improving the accuracy of subsequent gene expression. Microarray images comprised a publicly available dataset of seven images, obtained from the database of the MicroArray Genome Imaging & Clustering Tool website. Each image contained 6400 spots investigating the diauxic shift of Saccharomyces cerevisiae. The adaptive microarray image restoration technique combined 1/a griding algorithm for locating individual cell images, 2/a clustering algorithm, for assessing local noise from the spot’s background, and 3/a wiener restoration filter, for enhancing individual spots. The effect of the proposed technique quantified using a well-known boundary detection algorithm (Gradient Vector Flow snake) and the information theoretic metric of Jeffrey’s divergence. The proposed technique increased the Jeffrey’s metric from 0.0194 bits to 0.0314 bits, while boosted the performance of the employed boundary detection algorithm. Application of the proposed technique on cDNA microarray images resulted in noise suppression and facilitated spot edge detection.

[1]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[2]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[3]  Don Simone Daly,et al.  Automated Microarray Image Analysis Toolbox for MATLAB , 2005, Bioinform..

[4]  R.S.H. Istepanian,et al.  Microarray image enhancement by denoising using stationary wavelet transform , 2003, IEEE Transactions on NanoBioscience.

[5]  Jean Yee Hwa Yang,et al.  Analysis of CDNA Microarray Images , 2001, Briefings Bioinform..

[6]  G. Churchill Fundamentals of experimental design for cDNA microarrays , 2002, Nature Genetics.

[7]  David Botstein,et al.  Probing Lymphocyte Biology by Genomic-Scale Gene Expression Analysis , 1998, Journal of Clinical Immunology.

[8]  Rastislav Lukac,et al.  APPLICATION OF THE ADAPTIVE CENTER-WEIGHTED VECTOR MEDIAN FRAMEWORK FOR THE ENHANCEMENT OF CDNA MICROARRAY IMAGES , 2003 .

[9]  Mario Mastriani,et al.  Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain , 2007, 1807.11571.

[10]  Vincent Barra Robust segmentation and analysis of DNA microarray spots using an adaptative split and merge algorithm , 2006, Comput. Methods Programs Biomed..

[11]  Floor de Kort,et al.  Fluorescent labelling of cRNA for microarray applications , 2003 .

[12]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[13]  Hans Lehrach,et al.  Automated image analysis for array hybridization experiments , 2001, Bioinform..

[14]  Nikolas P. Galatsanos,et al.  Mixture model analysis of DNA microarray images , 2005, IEEE Transactions on Medical Imaging.

[15]  Johan T den Dunnen,et al.  A common reference for cDNA microarray hybridizations. , 2002, Nucleic acids research.

[16]  Mark Schena,et al.  Microarray Biochip Technology , 2000 .

[17]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[18]  Yoganand Balagurunathan,et al.  Noise factor analysis for cDNA microarrays. , 2004, Journal of biomedical optics.

[19]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[20]  K. Miura,et al.  Quantitative assessment of DNA microarrays--comparison with Northern blot analyses. , 2001, Genomics.

[21]  E. Southern,et al.  Molecular interactions on microarrays , 1999, Nature Genetics.

[22]  Matthew A. Zapala,et al.  Software and methods for oligonucleotide and cDNA array data analysis , 2002, Genome Biology.

[23]  Rastislav Lukac,et al.  cDNA microarray image processing using fuzzy vector filtering framework , 2005, Fuzzy Sets Syst..

[24]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  James L. Winkler,et al.  Accessing Genetic Information with High-Density DNA Arrays , 1996, Science.

[26]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[27]  K K Jain,et al.  Current status of fluorescent in-situ hybridisation. , 2004, Medical device technology.

[28]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[29]  Jesús Angulo,et al.  Automatic analysis of DNA microarray images using mathematical morphology , 2003, Bioinform..

[30]  Yoganand Balagurunathan,et al.  Simulation of cDNA microarrays via a parameterized random signal model. , 2002, Journal of biomedical optics.