Biogenesis, trafficking and up-regulation of nicotinic ACh receptors.

[1]  S. Colombo,et al.  Nicotine-Modulated Subunit Stoichiometry Affects Stability and Trafficking of α3β4 Nicotinic Receptor , 2013, The Journal of Neuroscience.

[2]  M. Picciotto,et al.  High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness , 2013, Psychopharmacology.

[3]  R. Nashmi,et al.  RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation , 2013, BMC Neuroscience.

[4]  M. Higley,et al.  Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior , 2012, Neuron.

[5]  H. Mansvelder,et al.  Adolescent nicotine exposure transiently increases high‐affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  F. Barrantes,et al.  Chaperoning a7 neuronal nicotinic acetylcholine receptors , 2012 .

[7]  F. Barrantes,et al.  Chaperoning α7 neuronal nicotinic acetylcholine receptors. , 2012, Biochimica et biophysica acta.

[8]  W. N. Green,et al.  Nicotine-Induced Upregulation of Native Neuronal Nicotinic Receptors Is Caused by Multiple Mechanisms , 2012, The Journal of Neuroscience.

[9]  P. Whiteaker,et al.  Progress and challenges in the study of α6-containing nicotinic acetylcholine receptors. , 2011, Biochemical pharmacology.

[10]  M. Marks,et al.  An autoradiographic survey of mouse brain nicotinic acetylcholine receptors defined by null mutants. , 2011, Biochemical pharmacology.

[11]  H. Lester,et al.  Trafficking of alpha4* nicotinic receptors revealed by superecliptic phluorin: effects of a beta4 amyotrophic lateral sclerosis-associated mutation and chronic exposure to nicotine. , 2011, The Journal of biological chemistry.

[12]  C. Gotti,et al.  Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS , 2011, Journal of Neuroimmunology.

[13]  J. Renart,et al.  Function of partially duplicated human α77 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. , 2011, The Journal of biological chemistry.

[14]  H. Lester,et al.  Nicotine up-regulates α4β2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning , 2011, The Journal of general physiology.

[15]  Ira V. Röder,et al.  Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled α-subunits , 2010, Proceedings of the National Academy of Sciences.

[16]  S. Kracun,et al.  Human α3β4 Neuronal Nicotinic Receptors Show Different Stoichiometry if They Are Expressed in Xenopus Oocytes or Mammalian HEK293 Cells , 2010, PloS one.

[17]  A. Tapper,et al.  From smoking to lung cancer: the CHRNA5/A3/B4 connection , 2010, Oncogene.

[18]  M. Jacob,et al.  The Postsynaptic Adenomatous Polyposis Coli (APC) Multiprotein Complex Is Required for Localizing Neuroligin and Neurexin to Neuronal Nicotinic Synapses in Vivo , 2010, The Journal of Neuroscience.

[19]  M. Zoli,et al.  A Comparative Study of the Effects of the Intravenous Self-Administration or Subcutaneous Minipump Infusion of Nicotine on the Expression of Brain Neuronal Nicotinic Receptor Subtypes , 2010, Molecular Pharmacology.

[20]  L. C. Robinson,et al.  GABA acts as a ligand chaperone in the early secretory pathway to promote cell surface expression of GABAA receptors , 2010, Brain Research.

[21]  D. Sagher,et al.  Ric-3 Promotes α7 Nicotinic Receptor Assembly and Trafficking through the ER Subcompartment of Dendrites , 2010, The Journal of Neuroscience.

[22]  Nolan R. Campbell,et al.  Endogenous Signaling through α7-Containing Nicotinic Receptors Promotes Maturation and Integration of Adult-Born Neurons in the Hippocampus , 2010, The Journal of Neuroscience.

[23]  D. K. Berg,et al.  Lateral Mobility of Nicotinic Acetylcholine Receptors on Neurons Is Determined by Receptor Composition, Local Domain, and Cell Type , 2010, The Journal of Neuroscience.

[24]  V. Tedesco,et al.  Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area α6β2* Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement , 2010, The Journal of Neuroscience.

[25]  F. Eusebi,et al.  Rare missense variants of neuronal nicotinic acetylcholine receptor altering receptor function are associated with sporadic amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[26]  Michele Zoli,et al.  Structural and functional diversity of native brain neuronal nicotinic receptors. , 2009, Biochemical pharmacology.

[27]  Antoine Taly,et al.  Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system , 2009, Nature Reviews Drug Discovery.

[28]  S. Moss,et al.  Mutations of cytosolic loop residues impair assembly and maturation of α7 nicotinic acetylcholine receptors , 2009, Journal of neurochemistry.

[29]  D. K. Berg,et al.  Postsynaptic scaffolds for nicotinic receptors on neurons , 2009, Acta Pharmacologica Sinica.

[30]  J. A. Dani,et al.  UBXD4, a UBX-Containing Protein, Regulates the Cell Surface Number and Stability of α3-Containing Nicotinic Acetylcholine Receptors , 2009, The Journal of Neuroscience.

[31]  S. Sine,et al.  Number and Locations of Agonist Binding Sites Required to Activate Homomeric Cys-Loop Receptors , 2009, The Journal of Neuroscience.

[32]  H. Lester,et al.  Nicotine Normalizes Intracellular Subunit Stoichiometry of Nicotinic Receptors Carrying Mutations Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy , 2009, Molecular Pharmacology.

[33]  Henry A. Lester,et al.  Nicotine Binding to Brain Receptors Requires a Strong Cation-π Interaction , 2009, Nature.

[34]  K. Braunewell,et al.  Nicotine-induced Ca2+-myristoyl Switch of Neuronal Ca2+ Sensor VILIP-1 in Hippocampal Neurons: A Possible Crosstalk Mechanism for Nicotinic Receptors , 2009, Cellular and Molecular Neurobiology.

[35]  M. Zoli,et al.  Rodent Habenulo–Interpeduncular Pathway Expresses a Large Variety of Uncommon nAChR Subtypes, But Only the α3β4* and α3β3β4* Subtypes Mediate Acetylcholine Release , 2009, The Journal of Neuroscience.

[36]  T. Gloveli,et al.  Neuronal Ca2+ sensor VILIP-1 leads to the upregulation of functional α4β2 nicotinic acetylcholine receptors in hippocampal neurons , 2009, Molecular and Cellular Neuroscience.

[37]  Cecilia Gotti,et al.  Diversity of vertebrate nicotinic acetylcholine receptors , 2009, Neuropharmacology.

[38]  R. Lukas,et al.  A Novel Nicotinic Acetylcholine Receptor Subtype in Basal Forebrain Cholinergic Neurons with High Sensitivity to Amyloid Peptides , 2009, The Journal of Neuroscience.

[39]  M. Treinin RIC‐3 and nicotinic acetylcholine receptors: Biogenesis, properties, and diversity , 2008, Biotechnology journal.

[40]  D. Bertrand,et al.  Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. , 2008, Biochemical pharmacology.

[41]  J. Mancias,et al.  Structural basis of cargo membrane protein discrimination by the human COPII coat machinery , 2008, The EMBO journal.

[42]  Elliot A Stein,et al.  Greater Nicotinic Acetylcholine Receptor Density in Smokers Than in Nonsmokers: A PET Study with 2-18F-FA-85380 , 2008, Journal of Nuclear Medicine.

[43]  Tatiana Foroud,et al.  Variants in nicotinic receptors and risk for nicotine dependence. , 2008, The American journal of psychiatry.

[44]  C. Kirkpatrick,et al.  Acetylcholine beyond neurons: the non‐neuronal cholinergic system in humans , 2008, British journal of pharmacology.

[45]  D. Perry,et al.  Adult and periadolescent rats differ in expression of nicotinic cholinergic receptor subtypes and in the response of these subtypes to chronic nicotine exposure , 2008, Brain Research.

[46]  Monica A. Giovanni,et al.  Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal nicotinic postsynaptic complex , 2008, Molecular and Cellular Neuroscience.

[47]  A. C. Collins,et al.  Partial Deletion of the Nicotinic Cholinergic Receptor α4 or β2 Subunit Genes Changes the Acetylcholine Sensitivity of Receptor-Mediated 86Rb+ Efflux in Cortex and Thalamus and Alters Relative Expression of α4 and β2 Subunits , 2008, Molecular Pharmacology.

[48]  Marina R. Picciotto,et al.  It is not “either/or”: Activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood , 2008, Progress in Neurobiology.

[49]  D. Bertrand,et al.  Up-regulation of Nicotinic Receptors by Nicotine Varies with Receptor Subtype* , 2008, Journal of Biological Chemistry.

[50]  N. Millar,et al.  Assembly and trafficking of nicotinic acetylcholine receptors (Review) , 2008, Molecular membrane biology.

[51]  W. N. Green,et al.  Endoplasmic Reticulum Chaperones Stabilize Nicotinic Receptor Subunits and Regulate Receptor Assembly* , 2007, Journal of Biological Chemistry.

[52]  Jingming Zhang,et al.  Role of endogenous nicotinic signaling in guiding neuronal development. , 2007, Biochemical pharmacology.

[53]  H. Lester,et al.  Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation. , 2007, Biochemical pharmacology.

[54]  M. Zoli,et al.  Heterogeneity and complexity of native brain nicotinic receptors. , 2007, Biochemical pharmacology.

[55]  Khosrow Rezvani,et al.  Nicotine Regulates Multiple Synaptic Proteins by Inhibiting Proteasomal Activity , 2007, The Journal of Neuroscience.

[56]  K. Kellar,et al.  The α4β2α5 nicotinic cholinergic receptor in rat brain is resistant to up‐regulation by nicotine in vivo , 2007 .

[57]  Henry A. Lester,et al.  Chronic Nicotine Cell Specifically Upregulates Functional α4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path , 2007, The Journal of Neuroscience.

[58]  J. Pezzullo,et al.  Chronic Nicotine Differentially Regulates α6- and β3-Containing Nicotinic Cholinergic Receptors in Rat Brain , 2007, Journal of Pharmacology and Experimental Therapeutics.

[59]  M. Ehlers,et al.  Emerging Roles for Ubiquitin and Protein Degradation in Neuronal Function , 2007, Pharmacological Reviews.

[60]  D. Bertrand,et al.  Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. , 2007, Annual review of pharmacology and toxicology.

[61]  M. Pilla,et al.  Selective down-regulation of [125I]Y0-α-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine , 2006, Neuroscience.

[62]  J. Steinbach,et al.  Role of the Agonist Binding Site in Up-Regulation of Neuronal Nicotinic α4β2 Receptors , 2006, Molecular Pharmacology.

[63]  M. Zoli,et al.  Brain nicotinic acetylcholine receptors: native subtypes and their relevance. , 2006, Trends in pharmacological sciences.

[64]  R. Lukas,et al.  Chaperone protein 14‐3‐3 and protein kinase A increase the relative abundance of low agonist sensitivity human α4β2 nicotinic acetylcholine receptors in Xenopus oocytes , 2006 .

[65]  E. Sher,et al.  α4β2 Nicotinic Receptors with High and Low Acetylcholine Sensitivity: Pharmacology, Stoichiometry, and Sensitivity to Long-Term Exposure to Nicotine , 2006, Molecular Pharmacology.

[66]  A. Kuryatov,et al.  Nicotine Acts as a Pharmacological Chaperone to Up-Regulate Human α4β2 Acetylcholine Receptors , 2005, Molecular Pharmacology.

[67]  S. Di Angelantonio,et al.  Long‐term exposure to the new nicotinic antagonist 1,2‐bisN‐cytisinylethane upregulates nicotinic receptor subtypes of SH‐SY5Y human neuroblastoma cells , 2005, British journal of pharmacology.

[68]  A. Gibb,et al.  RIC-3 Enhances Functional Expression of Multiple Nicotinic Acetylcholine Receptor Subtypes in Mammalian Cells , 2005, Molecular Pharmacology.

[69]  G. Feng,et al.  Ubiquilin-1 Regulates Nicotine-induced Up-regulation of Neuronal Nicotinic Acetylcholine Receptors* , 2005, Journal of Biological Chemistry.

[70]  W. N. Green,et al.  N-Linked Glycosylation Is Required for Nicotinic Receptor Assembly but Not for Subunit Associations with Calnexin* , 2005, Journal of Biological Chemistry.

[71]  T. Liljefors,et al.  Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. , 2005, Journal of medicinal chemistry.

[72]  J. Changeux,et al.  Heterogeneity and Selective Targeting of Neuronal Nicotinic Acetylcholine Receptor (nAChR) Subtypes Expressed on Retinal Afferents of the Superior Colliculus and Lateral Geniculate Nucleus: Identification of a New Native nAChR Subtype α3β2(α5 or β3) Enriched in Retinocollicular Afferents , 2005, Molecular Pharmacology.

[73]  D. Bertrand,et al.  Chronic Nicotine Exposure Upregulates Nicotinic Receptors by a Novel Mechanism , 2005, The Journal of Neuroscience.

[74]  J. Changeux,et al.  Nicotine Upregulates Its Own Receptors through Enhanced Intracellular Maturation , 2005, Neuron.

[75]  S. Heinemann,et al.  Exocytic Trafficking Is Required for Nicotine-induced Up-regulation of α4β2 Nicotinic Acetylcholine Receptors* , 2005, Journal of Biological Chemistry.

[76]  J. Lindstrom,et al.  Long-Term Nicotine Treatment Decreases Striatal α6* Nicotinic Acetylcholine Receptor Sites and Function in Mice , 2005, Molecular Pharmacology.

[77]  Neal L. Benowitz,et al.  Metabolism and Disposition Kinetics of Nicotine , 2005, Pharmacological Reviews.

[78]  Charles J. Cohen,et al.  Ric-3 Promotes Functional Expression of the Nicotinic Acetylcholine Receptor α7 Subunit in Mammalian Cells* , 2005, Journal of Biological Chemistry.

[79]  J. Christianson,et al.  Regulation of nicotinic receptor expression by the ubiquitin–proteasome system , 2004, The EMBO journal.

[80]  L. Rojas,et al.  Nicotine-induced Up-regulation and Desensitization of α4β2 Neuronal Nicotinic Receptors Depend on Subunit Ratio* , 2004, Journal of Biological Chemistry.

[81]  Narendra Pathak,et al.  Neuronal Nicotinic Synapse Assembly Requires the Adenomatous Polyposis Coli Tumor Suppressor Protein , 2004, The Journal of Neuroscience.

[82]  K. Kellar,et al.  The Comparative Pharmacology and Up-Regulation of Rat Neuronal Nicotinic Receptor Subtype Binding Sites Stably Expressed in Transfected Mammalian Cells , 2004, Journal of Pharmacology and Experimental Therapeutics.

[83]  A. C. Collins,et al.  Subsets of acetylcholine-stimulated 86Rb+ efflux and [125I]-epibatidine binding sites in C57BL/6 mouse brain are differentially affected by chronic nicotine treatment , 2004, Neuropharmacology.

[84]  Arthur E Johnson,et al.  Cotranslational Membrane Protein Biogenesis at the Endoplasmic Reticulum* , 2004, Journal of Biological Chemistry.

[85]  J. Changeux,et al.  An Extracellular Protein Microdomain Controls Up-regulation of Neuronal Nicotinic Acetylcholine Receptors by Nicotine* , 2004, Journal of Biological Chemistry.

[86]  S. L. Parker,et al.  Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: disproportionate increase of the alpha6 subunit. , 2004, Molecular pharmacology.

[87]  D. Perry,et al.  Subtype-Selective Up-Regulation by Chronic Nicotine of High-Affinity Nicotinic Receptors in Rat Brain Demonstrated by Receptor Autoradiography , 2003, Journal of Pharmacology and Experimental Therapeutics.

[88]  Millet Treinin,et al.  Conservation within the RIC-3 Gene Family , 2003, Journal of Biological Chemistry.

[89]  J. Christianson,et al.  Regulation of Nicotinic Acetylcholine Receptor Assembly , 2003, Annals of the New York Academy of Sciences.

[90]  Nicolas Le Novère,et al.  Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice , 2003, The Journal of Neuroscience.

[91]  J. S. Coggan,et al.  PDZ-Containing Proteins Provide a Functional Postsynaptic Scaffold for Nicotinic Receptors in Neurons , 2003, Neuron.

[92]  J. Lindstrom,et al.  Alternate Stoichiometries of α4β2 Nicotinic Acetylcholine Receptors , 2003 .

[93]  I. O'kelly,et al.  Forward Transport 14-3-3 Binding Overcomes Retention in Endoplasmic Reticulum by Dibasic Signals , 2002, Cell.

[94]  E. Gundelfinger,et al.  The Calcium Sensor Protein Visinin-like Protein-1 Modulates the Surface Expression and Agonist Sensitivity of the α4β2 Nicotinic Acetylcholine Receptor* , 2002, The Journal of Biological Chemistry.

[95]  C. Chiamulera,et al.  Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of α7 or α6 subunit mRNA: an autoradiography and in situ hybridization study in rat brain , 2002, The European journal of neuroscience.

[96]  Yun Yao,et al.  A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors , 2002, Nature Neuroscience.

[97]  L. Khiroug,et al.  Rat nicotinic ACh receptor α7 and β2 subunits co‐assemble to form functional heteromeric nicotinic receptor channels , 2002 .

[98]  L. Lin,et al.  The chaperone protein 14-3-3eta interacts with the nicotinic acetylcholine receptor alpha 4 subunit. Evidence for a dynamic role in subunit stabilization. , 2001, The Journal of biological chemistry.

[99]  Mark Ellisman,et al.  Adjacent Basic Amino Acid Residues Recognized by the COP I Complex and Ubiquitination Govern Endoplasmic Reticulum to Cell Surface Trafficking of the Nicotinic Acetylcholine Receptor α-Subunit* , 2001, The Journal of Biological Chemistry.

[100]  D. Bertrand,et al.  Chronic Exposure to Nicotine Upregulates the Human α4β2 Nicotinic Acetylcholine Receptor Function , 2001, The Journal of Neuroscience.

[101]  Michele Zoli,et al.  Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei , 2001, The Journal of Neuroscience.

[102]  F. Eusebi,et al.  Nicotinic Acetylcholine Receptors Assembled from the α7 and β3 Subunits* , 1999, The Journal of Biological Chemistry.

[103]  C. Stockmeier,et al.  Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. , 1999, The Journal of pharmacology and experimental therapeutics.

[104]  A. C. Collins,et al.  Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the beta2 subunit. , 1999, The Journal of pharmacology and experimental therapeutics.

[105]  G. Crabtree,et al.  Heteromeric Complexes of α5 and/or α7 Subunits: Effects of Calcium and Potential Role in Nicotine‐Induced Presynaptic Facilitation , 1999 .

[106]  P. Taylor,et al.  Determinants Responsible for Assembly of the Nicotinic Acetylcholine Receptor , 1999, The Journal of general physiology.

[107]  D. Bertrand,et al.  The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo , 1998, Nature Neuroscience.

[108]  K. Keyser,et al.  Chronic Nicotine Treatment Up-regulates Human α3β2 but Not α3β4 Acetylcholine Receptors Stably Transfected in Human Embryonic Kidney Cells* , 1998, The Journal of Biological Chemistry.

[109]  J. Lindstrom,et al.  Inhibition of Glucose Trimming with Castanospermine Reduces Calnexin Association and Promotes Proteasome Degradation of the α-Subunit of the Nicotinic Acetylcholine Receptor* , 1998, The Journal of Biological Chemistry.

[110]  Paul J. Groot-Kormelink,et al.  A Reporter Mutation Approach Shows Incorporation of the “Orphan” Subunit β3 into a Functional Nicotinic Receptor* , 1998, The Journal of Biological Chemistry.

[111]  S. Wonnacott,et al.  Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. , 1998, Molecular pharmacology.

[112]  V. Gerzanich,et al.  Chronic Nicotine Exposure Differentially Affects the Function of Human α3, α4, and α7 Neuronal Nicotinic Receptor Subtypes , 1997 .

[113]  D. Benson,et al.  Chick Ciliary Ganglion Neurons Contain Transcripts Coding for Acetylcholine Receptor-Associated Protein at Synapses (Rapsyn) , 1997, The Journal of Neuroscience.

[114]  N. Millar,et al.  Host Cell‐Specific Folding and Assembly of the Neuronal Nicotinic Acetylcholine Receptor α7 Subunit , 1997, Journal of neurochemistry.

[115]  A. Karlin,et al.  Functional contributions of α5 subunit to neuronal acetylcholine receptor channels , 1996, Nature.

[116]  W. N. Green,et al.  Acetylcholine receptor assembly: Subunit folding and oligomerization occur sequentially , 1993, Cell.

[117]  A. C. Collins,et al.  Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  J. Merlie,et al.  BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor , 1991, The Journal of cell biology.

[119]  J. Merlie,et al.  Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts , 1990, The Journal of cell biology.

[120]  J. Patrick,et al.  The postsynaptic 43k protein clusters muscle nicotinic acetylcholine receptors in xenopus oocytes , 1990, Neuron.

[121]  J. Merlie,et al.  Native folding of an acetylcholine receptor alpha subunit expressed in the absence of other receptor subunits. , 1988, The Journal of biological chemistry.

[122]  Bert Sakmann,et al.  Molecular distinction between fetal and adult forms of muscle acetylcholine receptor , 1986, Nature.

[123]  J. Merlie,et al.  Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. , 1982, The Journal of biological chemistry.

[124]  D. Bertrand,et al.  Nicotinic acetylcholine receptors: from basic science to therapeutics. , 2013, Pharmacology & therapeutics.

[125]  E. Albuquerque,et al.  Mammalian nicotinic acetylcholine receptors: from structure to function. , 2009, Physiological reviews.

[126]  M. Biasi,et al.  The Ubiquitin–Proteasome System Regulates the Stability of Neuronal Nicotinic Acetylcholine Receptors , 2009, Journal of Molecular Neuroscience.

[127]  S. Fucile Ca2+ permeability of nicotinic acetylcholine receptors. , 2004, Cell calcium.