S-cone psychophysics

Abstract We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, “lesions,” and to assess behavior in the absence of specific neural subsystems.

[1]  D. Munoz,et al.  Neuronal Activity in Monkey Superior Colliculus Related to the Initiation of Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[2]  Rhea T Eskew,et al.  ON and OFF S-cone pathways have different long-wave cone inputs , 2000, Vision Research.

[3]  J. Marshall,et al.  The ageing retina: Physiology or pathology , 1987, Eye.

[4]  G S Brindley,et al.  The flicker fusion frequency of the blue‐sensitive mechanism of colour vision , 1966, The Journal of physiology.

[5]  Adnan Tufail,et al.  The effect of sildenafil citrate (Viagra) on visual sensitivity. , 2007, Journal of vision.

[6]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[7]  R. M. Boynton,et al.  Temporal modulation sensitivity of the blue mechanism: Measurements made without chromatic adaptation , 1980, Vision Research.

[8]  Richard E. Kronauer,et al.  Temporal phase response of the short-wave cone signal for color and luminance , 1991, Vision Research.

[9]  Angel Vassilev,et al.  Human S-cone vision: relationship between perceptive field and ganglion cell dendritic field. , 2005, Journal of vision.

[10]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[11]  Stephen A. Burns,et al.  Imperfect optics may be the eye's defence against chromatic blur , 2002, Nature.

[12]  J. Werner,et al.  Aging of human short-wave cone pathways , 2012, Proceedings of the National Academy of Sciences.

[13]  Wei Li,et al.  Processing of S-cone signals in the inner plexiform layer of the mammalian retina , 2013, Visual Neuroscience.

[14]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[15]  D. Burman,et al.  Opponent-color responses in macaque extrageniculate visual pathways: the lateral pulvinar , 1983, Brain Research.

[16]  Richard N. Henson,et al.  Familiarity enhances invariance of face representations in human ventral visual cortex , 2005 .

[17]  A. Vassilev,et al.  Resolution acuity for equiluminant gratings of S-cone positive or negative contrast in human vision. , 2008, Journal of vision.

[18]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[19]  Alain Ptito,et al.  Absence of S‐cone input in human blindsight following hemispherectomy , 2006, The European journal of neuroscience.

[20]  D. Sabatinelli,et al.  A potential mechanism for compensation in the blue—yellow visual channel , 2013, Front. Hum. Neurosci..

[21]  D. K. Vaughan,et al.  Retinal light damage: Mechanisms and protection , 2010, Progress in Retinal and Eye Research.

[22]  A. Cowey,et al.  Nasal and temporal retinal ganglion cells projecting to the midbrain: Implications for “blindsight” , 1995, Neuroscience.

[23]  Donald I. A. MacLeod,et al.  The temporal properties of the human short-wave photoreceptors and their associated pathways , 1991, Vision Research.

[24]  A. Stockman,et al.  The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: silent surrounds? , 2009, Journal of vision.

[25]  A. Stockman,et al.  Cone spectral sensitivities and color matching , 1999 .

[26]  Robert M. Boynton,et al.  Temporal analog of the minimally distinct border , 1978, Vision Research.

[27]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[28]  Ian J Murray,et al.  Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency. , 2003, Investigative ophthalmology & visual science.

[29]  J. Pokorny,et al.  Effect of sawtooth polarity on chromatic and luminance detection , 1994, Visual Neuroscience.

[30]  J D Mollon,et al.  Reversed effect of adapting stimuli on visual sensitivity , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  John D. Mollon,et al.  Normal and Defective Colour Vision , 2003 .

[32]  W. Swanson,et al.  Effects of cone adaptation on variability in S-cone increment thresholds. , 2003, Investigative ophthalmology & visual science.

[33]  Mitsuo Ikeda,et al.  Temporal impulse response , 1986, Vision Research.

[34]  D. Alais,et al.  Orientation tuning of contrast masking caused by motion streaks. , 2010, Journal of vision.

[35]  A. Vassilev,et al.  Sensitivity to stimulus onset and offset in the S-cone pathway , 2008, Vision Research.

[36]  D. Munoz,et al.  Lateral interactions in the superior colliculus, not an extended fixation zone, can account for the remote distractor effect , 1999, Behavioral and Brain Sciences.

[37]  J. Moreland,et al.  Retinal Distribution of Macular Pigment , 1984 .

[38]  S. Schwartz Spectral sensitivity as revealed by isolated step onsets and step offsets. , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[39]  G. Verriest Colour Vision Deficiencies VII , 1984, Documenta Ophthalmologica Proceedings Series.

[40]  Petroc Sumner,et al.  Naso-temporal asymmetry for signals invisible to the retinotectal pathway. , 2008, Journal of neurophysiology.

[41]  R. Marrocco,et al.  Monkey superior colliculus: properties of single cells and their afferent inputs. , 1977, Journal of neurophysiology.

[42]  F. Scharnowski,et al.  Long-lasting modulation of feature integration by transcranial magnetic stimulation. , 2009, Journal of vision.

[43]  D. H. Kelly Spatio-temporal frequency characteristics of color-vision mechanisms* , 1974 .

[44]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[45]  J. Mollon,et al.  Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. , 2009, Journal of vision.

[46]  Angela M. Brown,et al.  Higher order color mechanisms , 1986, Vision Research.

[47]  F. M. D. Monasterio Properties of ganglion cells with atypical receptive-field organization in retina of macaques. , 1978 .

[48]  N. N. Oiwa,et al.  Irreversible color vision losses in patients with chronic mercury vapor intoxication , 2008, Visual Neuroscience.

[49]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[50]  J. Mollon,et al.  Forward and backward masking with brief chromatic stimuli , 2001 .

[51]  Barry B. Lee,et al.  Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? , 2006, Visual Neuroscience.

[52]  A. Stockman,et al.  Human cone light adaptation: from behavioral measurements to molecular mechanisms. , 2006, Journal of vision.

[53]  D. Macleod,et al.  Blue-sensitive cones do not contribute to luminance. , 1980, Journal of the Optical Society of America.

[54]  C. Cavonius,et al.  Contrast sensitivity of individual colour mechanisms of human vision. , 1975, The Journal of physiology.

[55]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[56]  L. Peichl,et al.  S cones: Evolution, retinal distribution, development, and spectral sensitivity , 2013, Visual Neuroscience.

[57]  Petroc Sumner,et al.  Oculomotor distraction by signals invisible to the retinotectal and magnocellular pathways. , 2009, Journal of neurophysiology.

[58]  A Uvijls,et al.  A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores. , 1982, American journal of ophthalmology.

[59]  Sheng He,et al.  Visible flicker from invisible patterns , 1993, Nature.

[60]  K R Gegenfurtner,et al.  Contrast detection in luminance and chromatic noise. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[61]  J. Jonides Voluntary versus automatic control over the mind's eye's movement , 1981 .

[62]  L. Silveira,et al.  Visual field losses in workers exposed to mercury vapor. , 2007, Environmental research.

[63]  D M Snodderly,et al.  Individual variations in the spatial profile of human macular pigment. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[64]  A B Metha,et al.  Transmission of spatial information in S-cone pathways , 2001, Visual Neuroscience.

[65]  J. Krauskopf,et al.  Reaction time as a measure of the temporal response properties of individua colour mechanisms. , 1973, Vision research.

[66]  D L Sparks,et al.  Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. , 1986, Physiological reviews.

[67]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[68]  P. Sterling Quantitative mapping with the electron microscope: retinal terminals in the superior colliculus. , 1973, Brain research.

[69]  David R. Williams,et al.  Punctate sensitivity of the blue-sensitive mechanism , 1981, Vision Research.

[70]  J. Mollon,et al.  Cardinal axes are not independent in color discrimination. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[71]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[72]  Petroc Sumner,et al.  Sensory sluggishness dissociates saccadic, manual, and perceptual responses: an S-cone study. , 2008, Journal of vision.

[73]  Avishai Henik,et al.  Extrageniculate Contributions to Reflex Visual Orienting in Normal Humans: A Temporal Hemifield Advantage , 1991, Journal of Cognitive Neuroscience.

[74]  Blue-on-yellow perimetry in the complete type of congenital stationary night blindness. , 1999, Investigative ophthalmology & visual science.

[75]  A. Adams,et al.  Short-wavelength-sensitive cones do not contribute to mesopic luminosity. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[76]  P. Lennie,et al.  Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque , 2008, The Journal of Neuroscience.

[77]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[78]  V C Smith,et al.  Aging of the human lens. , 1987, Applied optics.

[79]  J. Mollon,et al.  Colour vision : physiology and psychophysics , 1983 .

[80]  V. Glezer The receptive fields of the retina. , 1965, Vision research.

[81]  C. Stromeyer,et al.  Selective chromatic adaptation at different spatial frequencies , 1978, Vision Research.

[82]  M. Ernst,et al.  The statistical determinants of adaptation rate in human reaching. , 2008, Journal of vision.

[83]  Nancy B. Carlisle,et al.  Where do we store the memory representations that guide attention? , 2013, Journal of vision.

[84]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[85]  C. Kennard,et al.  Distinct Cortical and Collicular Mechanisms of Inhibition of Return Revealed with S Cone Stimuli , 2004, Current Biology.

[86]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[87]  D. Teller,et al.  Infant color vision: A search for short-wavelength-sensitive mechanisms by means of chromatic adaptation , 1980, Vision Research.

[88]  S. Hewlett,et al.  S Cone Loss with Aging , 1989 .

[89]  J. Werner Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span , 1996, Progress in Retinal and Eye Research.

[90]  B. Bergum,et al.  Attention and performance IX , 1982 .

[91]  J. Todd,et al.  The effects of viewing angle, camera angle, and sign of surface curvature on the perception of three-dimensional shape from texture. , 2007, Journal of vision.

[92]  Joel Pokorny,et al.  Photostimulator allowing independent control of rods and the three cone types , 2004, Visual Neuroscience.

[93]  E. Switkes,et al.  Sites of age-related sensitivity loss in a short-wave cone pathway. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[94]  Joel Pokorny,et al.  Responses of macaque ganglion cells and human observers to compound periodic waveforms , 1993, Vision Research.

[95]  R. L. Valois Color Vision Mechanisms in the Monkey , 1960 .

[96]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[97]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[98]  A. Stockman,et al.  The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches , 1999, Vision Research.

[99]  Peter H. Schiller,et al.  Lack of blue OFF-center cells in the visual system of the monkey , 1978, Brain Research.

[100]  J. Mollon,et al.  A theory of theΠ1 andΠ3 color mechanisms of stiles , 1979, Vision Research.

[101]  C. Stromeyer,et al.  Contribution of human short‐wave cones to luminance and motion detection. , 1989, The Journal of physiology.

[102]  Rhea T. Eskew,et al.  Chromatic detection and discrimination analyzed by a Bayesian classifier , 2001, Vision Research.

[103]  M. Mallar Chakravarty,et al.  Blindsight Mediated by an S-Cone-independent Collicular Pathway: An fMRI Study in Hemispherectomized Subjects , 2010, Journal of Cognitive Neuroscience.

[104]  Rhea T. Eskew,et al.  Higher order color mechanisms: A critical review , 2009, Vision Research.

[105]  K. D. De Valois,et al.  Orientation and spatial-frequency discrimination for luminance and chromatic gratings. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[106]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[107]  A. Vassilev,et al.  Spatial summation of blue-on-yellow light increments and decrements in human vision , 2000, Vision Research.

[108]  L Weiskrantz,et al.  Visual capacity in the hemianopic field following a restricted occipital ablation. , 1974, Brain : a journal of neurology.

[109]  R. M. Boynton Discriminations That Depend Upon Blue Cones , 1978 .

[110]  H. Ives XII. Studies in the photometry of lights of different colours , 1912 .

[111]  Qasim Zaidi,et al.  Visual mechanisms that signal the direction of color changes , 1993, Vision Research.

[112]  A. Vassilev,et al.  On the search for an appropriate metric for reaction time to suprathreshold increments and decrements , 2009, Vision Research.

[113]  S. Mills,et al.  Short-wavelength cone-opponent retinal ganglion cells in mammals , 2014, Visual Neuroscience.

[114]  Paul R. Martin,et al.  Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways , 2014, Visual Neuroscience.

[115]  J. Mollon,et al.  Relative latencies of cone signals measured by a moving vernier task. , 2008, Journal of vision.

[116]  E. Zrenner,et al.  Viagra® (sildenafil citrate) and ophthalmology , 2002, Progress in Retinal and Eye Research.

[117]  M. Webster,et al.  The influence of contrast adaptation on color appearance , 1994, Vision Research.

[118]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[119]  Roger S. Anderson,et al.  Changes in Ricco’s Area with Background Luminance in the S-Cone Pathway , 2013, Optometry and vision science : official publication of the American Academy of Optometry.

[120]  Petroc Sumner,et al.  Signals Invisible to the Collicular and Magnocellular Pathways Can Capture Visual Attention , 2002, Current Biology.

[121]  R. Anderson,et al.  Short-wavelength acuity: optical factors affecting detection and resolution of blue–yellow sinusoidal gratings in foveal and peripheral vision , 2003, Vision Research.

[122]  R. Carr,et al.  S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. , 1989, Investigative ophthalmology & visual science.

[123]  J. Werner,et al.  The impulse response of S-cone pathways in detection of increments and decrements , 2008, Visual Neuroscience.

[124]  W. Stiles Increment thresholds and the mechanisms of colour vision. , 1949, Documenta ophthalmologica. Advances in ophthalmology.

[125]  Lindsay T Sharpe,et al.  Tritanopic color matches and the middle- and long-wavelength-sensitive cone spectral sensitivities , 2000, Vision Research.

[126]  John D. Mollon,et al.  A TAXONOMY OF TRITANOPIAS , 1982 .

[127]  David J. Calkins,et al.  Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina , 1996, Nature.

[128]  D. Teller,et al.  Discrimination of chromatic from white light by two-month-old human infants , 1978, Vision Research.

[129]  Mitsuo Ikeda,et al.  Temporal Summation of Positive and Negative Flashes in the Visual System , 1965 .

[130]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[131]  R. M. Boynton,et al.  A line, not a space, represents visual distinctness of borders formed by different colors. , 1976, Science.

[132]  K. Mullen,et al.  Human photopic vision with only short wavelength cones: post‐receptoral properties. , 1989, The Journal of physiology.

[133]  J. Mollon,et al.  Colour illusion and evidence for interaction between cone mechanisms , 1975, Nature.

[134]  D. Robinson,et al.  Shared neural control of attentional shifts and eye movements , 1996, Nature.

[135]  Lee McIlreavy,et al.  The effect of age‐related lens yellowing on Farnsworth–Munsell 100 hue error score , 2008, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[136]  K. Mullen,et al.  Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms , 1996 .

[137]  A. Cowey,et al.  Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys , 1994, Neuroscience.

[138]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[139]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[140]  J. Mollon Color vision. , 1982, Annual review of psychology.

[141]  S. Schein,et al.  Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. , 1981, Science.

[142]  Induced desensitization , 1986, Vision Research.

[143]  R. M. Boynton,et al.  Chromatic border perception: The role of red- and green-sensitive cones , 1978, Vision Research.

[144]  Peter E. Keller,et al.  The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization , 2013, Front. Hum. Neurosci..

[145]  Andrew J. Zele,et al.  Threshold units: A correct metric for reaction time? , 2007, Vision Research.

[146]  W. Stiles COLOR VISION: THE APPROACH THROUGH INCREMENT-THRESHOLD SENSITIVITY. , 1959 .

[147]  Earl L. Smith,et al.  Frontiers in Visual Science , 1978 .

[148]  J. Werner,et al.  Isolation of short-wavelength-sensitive cone photoreceptors in 4–6-week-old human infants , 1987, Vision Research.

[149]  Y. Xiao,et al.  Processing of the S-cone signals in the early visual cortex of primates , 2013, Visual Neuroscience.

[150]  Chris Tailby,et al.  Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys , 2012, The Journal of physiology.

[151]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[152]  Paul R. Martin,et al.  Random Wiring in the Midget Pathway of Primate Retina , 2006, The Journal of Neuroscience.

[153]  Bevil R. Conway,et al.  Color signals through dorsal and ventral visual pathways , 2014, Visual Neuroscience.

[154]  K Knoblauch,et al.  Age and illuminance effects in the Farnsworth-Munsell 100-hue test. , 1987, Applied optics.

[155]  J. D. Mollon,et al.  Foveal color perception: Minimal thresholds at a boundary between perceptual categories , 2012, Vision Research.

[156]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[157]  W. McIlhagga,et al.  Detection mechanisms in L-, M-, and S-cone contrast space. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[158]  Karl R Gegenfurtner,et al.  Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. , 2013, Journal of vision.

[159]  J. Werner,et al.  Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[160]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[161]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[162]  John D. Mollon,et al.  How to find a tritan line , 2003 .

[163]  Bb Lee,et al.  Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  J. D. Mollon,et al.  Is the S-opponent chromatic sub-system sluggish? , 2004, Vision Research.

[165]  J D Mollon,et al.  Parafoveal color discrimination: a chromaticity locus of enhanced discrimination. , 2011, Journal of vision.

[166]  D. Dacey,et al.  Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina , 2013, Visual Neuroscience.

[167]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.