High Stokes shift perylene dyes for luminescent solar concentrators.

Highly efficient plastic based single layer Luminescent Solar Concentrators (LSCs) require the design of luminophores having complete spectral separation between absorption and emission spectra (large Stokes shift). We describe the design, synthesis and characterization of a new perylene dye possessing Stokes shift as high as 300 meV, fluorescent quantum yield in the LSC slab of 70% and high chemical and photochemical stability.

[1]  R. Goddard,et al.  Tetrabutylammonium salts of carbazole and dibenzoazepine: synthesis, crystal structures and use in anionic polymerization , 1995 .

[2]  T. Weil,et al.  Synthesis and characterization of dendritic multichromophores based on rylene dyes for vectorial transduction of excitation energy. , 2004, Chemistry.

[3]  A. Brouwer,et al.  Paradoxical solvent effects on the absorption and emission spectra of amino-substituted perylene monoimides. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  K. Müllen,et al.  Pentarylene- and hexarylenebis(dicarboximide)s: near-infrared-absorbing polyaromatic dyes. , 2006, Angewandte Chemie.

[5]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[6]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[7]  Holger Braunschweig,et al.  High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. , 2009, Journal of the American Chemical Society.

[8]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[9]  Luke Theogarajan,et al.  Luminescent Solar Concentrators Employing Phycobilisomes , 2009 .

[10]  F. Dimroth,et al.  Increasing the efficiency of fluorescent concentrator systems , 2009 .

[11]  P. Erk,et al.  Rainbow perylene monoimides: easy control of optical properties. , 2009, Chemistry.

[12]  P. Borowicz,et al.  Non-self-absorbing materials for Luminescent Solar Concentrators (LSC) , 2010 .

[13]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[14]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[15]  Xin Wang,et al.  Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region , 2011 .

[16]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[17]  F. Würthner,et al.  Molecular assemblies of perylene bisimide dyes in water. , 2012, Angewandte Chemie.

[18]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[19]  Massimo Moret,et al.  NIR emitting ytterbium chelates for colourless luminescent solar concentrators. , 2012, Physical chemistry chemical physics : PCCP.

[20]  Seth B. Darling,et al.  Optimizing luminescent solar concentrator design , 2012 .

[21]  Chen Li,et al.  Facile transformation of perylene tetracarboxylic acid dianhydride into strong donor-acceptor chromophores. , 2012, Organic letters.

[22]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[23]  Yongfang Li,et al.  Small molecule semiconductors for high-efficiency organic photovoltaics. , 2012, Chemical Society reviews.