Computational Complexity and the Nature of Quantum Mechanics

Quantum theory (QT) has been confirmed by numerous experiments, yet we still cannot fully grasp the meaning of the theory. As a consequence, the quantum world appears to us paradoxical. Here we shed new light on QT by being based on two main postulates: 1. the theory should be logically consistent; 2. inferences in the theory should be computable in polynomial time. The first postulate is what we require to each well-founded mathematical theory. The computation postulate defines the physical component of the theory. We show that the computation postulate is the only true divide between QT, seen as a generalised theory of probability, and classical probability. All quantum paradoxes, and entanglement in particular, arise from the clash of trying to reconcile a computationally intractable, somewhat idealised, theory (classical physics) with a computationally tractable theory (QT) or, in other words, from regarding physics as fundamental rather than computation.

[1]  J. Skilling,et al.  The Symmetrical Foundation of Measure, Probability, and Quantum Theories , 2017, Annalen der Physik.

[2]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[3]  S. Popescu,et al.  Causality and nonlocality as axioms for quantum mechanics , 1997, quant-ph/9709026.

[4]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[5]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[6]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Scott Aaronson Quantum Computing and Hidden Variables II: The Complexity of Sampling Histories , 2004 .

[8]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[9]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[10]  W. Greiner Mathematical Foundations of Quantum Mechanics I , 1993 .

[11]  Marco Zaffalon,et al.  Sum-of-squares for bounded rationality , 2019, Int. J. Approx. Reason..

[12]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[13]  Kevin H. Knuth,et al.  Quantum Theory and Probability Theory: Their Relationship and Origin in Symmetry , 2011, Symmetry.

[14]  M. Wolf,et al.  Undecidability of the spectral gap , 2015, Nature.

[15]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[16]  William Demopoulos,et al.  Physical theory and its interpretation : essays in honor of Jeffrey Bub , 2006 .

[17]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[18]  Marco Zaffalon,et al.  Desirability foundations of robust rational decision making , 2018, Synthese.

[19]  Marco Zaffalon,et al.  A Polarity Theory for Sets of Desirable Gambles , 2017, ISIPTA.

[20]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[22]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[23]  C. Fuchs,et al.  A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.

[24]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[25]  Giulio Chiribella,et al.  How continuous quantum measurements in finite dimensions are actually discrete. , 2007, Physical review letters.

[26]  Alexander Wilce Four and a Half Axioms for Finite Dimensional Quantum Mechanics , 2009, 0912.5530.

[27]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[29]  D. M. Appleby Facts, Values and Quanta , 2005 .

[30]  Christopher Ferrie,et al.  Quasi-probability representations of quantum theory with applications to quantum information science , 2010, 1010.2701.

[31]  Wim van Dam Implausible consequences of superstrong nonlocality , 2012, Natural Computing.

[32]  D. Bacon Quantum computational complexity in the presence of closed timelike curves , 2003, quant-ph/0309189.

[33]  M. Srinivas,et al.  When is a hidden variable theory compatible with quantum mechanics? , 1982 .

[34]  Werner Vogel,et al.  Numerical Construction of Multipartite Entanglement Witnesses , 2018, Physical Review X.

[35]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[36]  Daniel K. Molzahn,et al.  Lasserre Hierarchy for Large Scale Polynomial Optimization in Real and Complex Variables , 2017, SIAM J. Optim..

[37]  C. Caves,et al.  Explicit product ensembles for separable quantum states , 1999, quant-ph/9904109.

[38]  Marco Zaffalon,et al.  A Gleason-Type Theorem for Any Dimension Based on a Gambling Formulation of Quantum Mechanics , 2016, Foundations of Physics.

[39]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[40]  Bart Jacobs,et al.  An Introduction to Effectus Theory , 2015, ArXiv.

[41]  S. Wehner Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities , 2005, quant-ph/0510076.

[42]  W. Vogel,et al.  Necessary and sufficient conditions for bipartite entanglement , 2008, 0805.1318.

[43]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[44]  D. M. Appleby Symmetric informationally complete measurements of arbitrary rank , 2007 .

[45]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[46]  Alan F. Karr,et al.  Extreme Points of Certain Sets of Probability Measures, with Applications , 1983, Math. Oper. Res..

[47]  Marco Zaffalon,et al.  SOS for Bounded Rationality , 2017, ISIPTA.

[48]  Stephanie Wehner,et al.  The Quantum Moment Problem and Bounds on Entangled Multi-prover Games , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[49]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[50]  L. J. Landau,et al.  Empirical two-point correlation functions , 1988 .

[51]  Gilles Brassard,et al.  Is information the key? , 2005 .

[52]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[53]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[54]  Pravesh Kothari,et al.  Quantum entanglement, sum of squares, and the log rank conjecture , 2017, Electron. Colloquium Comput. Complex..

[55]  Christopher G. Timpson,et al.  Quantum Bayesianism: A study , 2008, 0804.2047.

[56]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[57]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[58]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[59]  D. M. Appleby Probabilities are single-case or nothing , 2004, quant-ph/0408058.

[60]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[61]  C. Rovelli,et al.  Relational Quantum Mechanics , 2006 .

[62]  K. McCardle,et al.  Arbitrage, rationality, and equilibrium , 1991 .

[63]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[64]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[65]  C. Fabre,et al.  Multipartite Entanglement of a Two-Separable State. , 2016, Physical review letters.

[66]  D. Fivel Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms , 2010, 1010.5300.

[67]  J. Jauch,et al.  CAN HIDDEN VARIABLES BE EXCLUDED IN QUANTUM MECHANICS , 1963 .

[68]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[69]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[71]  Markus P. Mueller,et al.  Quantum theory as a principle theory: insights from an information-theoretic reconstruction , 2017, 1707.05602.

[72]  P. M. Williams,et al.  Notes on conditional previsions , 2007, Int. J. Approx. Reason..

[73]  Ariel Caticha Consistency, amplitudes, and probabilities in quantum theory , 1998 .

[74]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[75]  P. Goyal Derivation of quantum theory from Feynman's rules , 2014, 1403.3527.

[76]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[77]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[78]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[79]  J. Rau On quantum vs. classical probability , 2007, 0710.2119.

[80]  Howard Barnum,et al.  Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.

[81]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[82]  L. Hardy Foliable Operational Structures for General Probabilistic Theories , 2009, 0912.4740.

[83]  I. Pitowsky,et al.  Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability , 2002, quant-ph/0208121.

[84]  Chen Ling,et al.  Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations , 2009, SIAM J. Optim..

[85]  Stefano Pironio,et al.  Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing , 2015, 1504.06960.

[86]  Marco Zaffalon,et al.  Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices , 2016, 1605.08177.

[87]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[88]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[89]  N. Mermin,et al.  Physics: QBism puts the scientist back into science , 2014, Nature.

[90]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[91]  Lluis Masanes,et al.  Information-Theoretic Postulates for Quantum Theory , 2012, 1203.4516.

[92]  John P. D'Angelo,et al.  Polynomial Optimization on Odd-Dimensional Spheres , 2009 .

[93]  Marco Zaffalon,et al.  Bernstein's socks and polynomial-time provable coherence , 2019, 1903.04406.

[94]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[95]  Marco Zaffalon,et al.  Axiomatising Incomplete Preferences through Sets of Desirable Gambles , 2017, J. Artif. Intell. Res..

[96]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[97]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.