An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of Electrodynamics

In plasma simulations, where the speed of light divided by a characteristic length is at a much higher frequency than other relevant parameters in the underlying system, such as the plasma frequency, implicit methods begin to play an important role in generating efficient solutions in these multi-scale problems. Under conditions of scale separation, one can rescale Maxwell’s equations in such a way as to give a magneto static limit known as the Darwin approximation of electromagnetics. In this work, we present a new approach to solve Maxwell’s equations based on a Method of Lines Transpose ($$\hbox {MOL}^T$$MOLT) formulation, combined with a fast summation method with computational complexity $$O(N\log {N})$$O(NlogN), where N is the number of grid points (particles). Under appropriate scaling, we show that the proposed schemes result in asymptotic preserving methods that can recover the Darwin limit of electrodynamics.

[1]  Gabriella Puppo,et al.  Microscopically implicit-macroscopically explicit schemes for the BGK equation , 2012, J. Comput. Phys..

[2]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[3]  Naoshi Nishimura,et al.  A periodic FMM for Maxwell's equations in 3D and its applications to problems related to photonic crystals , 2008, J. Comput. Phys..

[4]  Pierre Degond,et al.  An analysis of the Darwin model of approximation to Maxwell’s equations , 1992 .

[5]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[6]  John Ambrosiano,et al.  A finite element formulation of the Darwin PIC model for use on unstructured grids , 1995 .

[7]  C. Darwin,et al.  LI. The dynamical motions of charged particles , 1920 .

[8]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[9]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[10]  Konrad-Zuse-Zentrum Takustr An Adaptive Rothe Method for the Wave Equation ∗ , 1998 .

[11]  Eric M. Wolf,et al.  Method of Lines Transpose: A Fast Implicit Wave Propagator , 2013, 1306.6902.

[12]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[13]  Jerold W. Emhoff,et al.  Grid-free plasma Simulation techniques , 2006, IEEE Transactions on Plasma Science.

[14]  Fabrice Deluzet,et al.  Numerical approximation of the Euler-Maxwell model in the quasineutral limit , 2011, J. Comput. Phys..

[15]  Zydrunas Gimbutas,et al.  A Generalized Fast Multipole Method for Nonoscillatory Kernels , 2003, SIAM J. Sci. Comput..

[16]  N. Nishimura Fast multipole accelerated boundary integral equation methods , 2002 .

[17]  P. Raviart,et al.  A hierarchy of approximate models for the Maxwell equations , 1996 .

[18]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[19]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[20]  Jun Zou,et al.  Finite element convergence for the Darwin model to Maxwell's equations , 1997 .

[21]  Matthew F. Causley,et al.  Method of lines transpose: An implicit solution to the wave equation , 2014, Math. Comput..

[22]  Eric Sonnendrücker,et al.  Approximate models for the Maxwell equations , 1995 .

[23]  Jian-Guo Liu,et al.  Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..

[24]  P. Degond,et al.  Numerical Approximation of the Maxwell Equations in Inhomogeneous Media by aP1Conforming Finite Element Method , 1996 .

[25]  Nicolas Besse,et al.  Numerical Approximation of Self-Consistent Vlasov Models for Low-Frequency Electromagnetic Phenomena , 2007, Int. J. Appl. Math. Comput. Sci..

[26]  P. Gibbon,et al.  Mesh-Free Magnetoinductive Plasma Model , 2010, IEEE Transactions on Plasma Science.

[27]  Eric F Darve The Fast Multipole Method , 2000 .

[28]  Patrick Ciarlet,et al.  Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries , 2007, J. Comput. Phys..

[29]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[30]  Tao Xiong,et al.  High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation , 2014, J. Comput. Phys..

[31]  Matthew F. Causley,et al.  Higher Order A-Stable Schemes for the Wave Equation Using a Successive Convolution Approach , 2014, SIAM J. Numer. Anal..

[32]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[33]  Weihua Geng,et al.  A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules , 2013, J. Comput. Phys..

[34]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[35]  Peijun Li,et al.  A Cartesian treecode for screened coulomb interactions , 2009, J. Comput. Phys..

[36]  M. Raydan,et al.  Theoretical analysis of the Exponential Transversal Method of Lines for the diffusion equation , 2000 .

[37]  Holger Schmitz,et al.  Darwin-Vlasov simulations of magnetised plasmas , 2006, J. Comput. Phys..

[38]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[39]  Massimo Guiggiani,et al.  A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method , 1990 .

[40]  Martin Mašek,et al.  Progress in Mesh-Free Plasma Simulation With Parallel Tree Codes , 2010, IEEE Transactions on Plasma Science.

[41]  N. Mauser,et al.  The Selfconsistent Pauli Equation , 2001 .

[42]  F. De Flaviis,et al.  Time domain vector potential formulation for the solution of electromagnetic problems , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.