On the chromatic number of Latin square graphs

The chromatic number of a Latin square is the least number of partial transversals which cover its cells. This is just the chromatic number of its associated Latin square graph. Although Latin square graphs have been widely studied as strongly regular graphs, their chromatic numbers appear to be unexplored. We determine the chromatic number of a circulant Latin square, and find bounds for some other classes of Latin squares. With a computer, we find the chromatic number for all main classes of Latin squares of order at most eight.