Central Binomial Sums, Multiple Clausen Values, and Zeta Values

We find and prove relationships between Riemann zeta values and central binomial sums. We also investigate alternating binomial sums (also called Apéry sums). The study of nonalternating sums leads to an investigation of different types of sums which we call multiple Clausen values. The study of alternating sums leads to a tower of experi mental resuIts involving polylogarithms in the golden ratio.

[1]  D. J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .

[2]  Jonathan M. Borwein,et al.  Applications of integer relation algorithms , 2000, Discret. Math..

[3]  Don Zagier,et al.  Special values and functional equations of polylogarithms , 1991 .

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  David H. Bailey,et al.  A seventeenth-order polylogarithm ladder , 1999 .

[6]  Jonathan M. Borwein,et al.  Special Values of Multidimensional Polylogarithms , 2001 .

[7]  Jonathan M. Borwein,et al.  Experimental Mathematics: Recent Developments and Future Outlook , 2000 .

[8]  L. Lewin Structural Properties of Polylogarithms , 1991 .

[9]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[10]  Jonathan M. Borwein,et al.  Combinatorial Aspects of Multiple Zeta Values , 1998, Electron. J. Comb..

[11]  David H. Bailey,et al.  Parallel integer relation detection: Techniques and applications , 2001, Math. Comput..

[12]  Jonathan M. Borwein,et al.  Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..

[13]  J. Borwein,et al.  Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .

[14]  Jonathan M. Borwein,et al.  Pi and the AGM , 1999 .

[15]  David J. Broadhurst,et al.  Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ?(3) and ?(5) , 1998 .

[16]  L. Dobrzynski,et al.  Study of hypercharge exchange reactions of the type 0−1/2+→2+1/2+ at 4GeV/c , 1981 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  Badih Ghusayni Some Representations of $\zeta (3)$ , 1998 .

[19]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[20]  Henri Cohen,et al.  A Sixteenth-order Polylogarithm Ladder , 1992, Exp. Math..

[21]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[22]  Stegun (editors , 1970 .

[23]  Jonathan M. Borwein,et al.  Computational strategies for the Riemann zeta function , 2000 .