Metric Combinatorics of Convex Polyhedra: Cut Loci and Nonoverlapping Unfoldings

AbstractLet S be the boundary of a convex polytope of dimension d+1, or more generally let S be a convex polyhedral pseudomanifold. We prove that S has a polyhedral nonoverlapping unfolding into  ${\Bbb{R}}^{d}$ , so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in  ${\Bbb{R}}^{d}$ by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v∈S, which is the exponential map to S from the tangent space at v. We characterize the cut locus (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of three-polytopes into  ${\Bbb{R}}^{2}$ . We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic nonpolynomial complexity of nonconvex manifolds.

[1]  Joseph O'Rourke,et al.  Folding and Unfolding in Computational Geometry , 1998, JCDCG.

[2]  Mark Jerrum,et al.  The Complexity of Finding Minimum-Length Generator Sequences , 1985, Theor. Comput. Sci..

[3]  Joseph S. B. Mitchell,et al.  New results on shortest paths in three dimensions , 2004, SCG '04.

[4]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[5]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[6]  David Eppstein,et al.  Ununfoldable polyhedra with convex faces , 1999, Comput. Geom..

[7]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  Oded Goldreich,et al.  The Minimum-Length Generator Sequence Problem is NP-Hard , 1981, J. Algorithms.

[9]  D. Mount On Finding Shortest Paths on Convex Polyhedra. , 1985 .

[10]  Yu. D. Burago,et al.  A.D. Alexandrov spaces with curvature bounded below , 1992 .

[11]  Günter Rote,et al.  Blowing Up Polygonal Linkages , 2003 .

[12]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[13]  Yijie Han,et al.  Shortest paths on a polyhedron , 1996, Int. J. Comput. Geom. Appl..

[14]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[15]  Boris Aronov,et al.  Star Unfolding of a Polytope with Applications , 1997, SIAM J. Comput..

[16]  Franz-Erich Wolter,et al.  Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.

[17]  G. Ziegler Lectures on Polytopes , 1994 .

[18]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[19]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  Robert Connelly,et al.  Pushing disks apart - The Kneser-Poulsen conjecture in the plane , 2001 .

[22]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[23]  Boris Aronov,et al.  Nonoverlap of the star unfolding , 1992, Discret. Comput. Geom..

[24]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[25]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[26]  E. Demaine,et al.  Folding and unfolding , 2002 .

[27]  D. T. Lee,et al.  A New Approach for the Geodesic Voronoi Diagram of Points in a Simple Polygon and Other Restricted Polygonal Domains , 1998, Algorithmica.

[28]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[29]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  Bernard Chazelle,et al.  An optimal convex hull algorithm and new results on cuttings , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[31]  Stephanie Halbeisen On tangent cones of Alexandrov spaces with curvature bounded below , 2000 .

[32]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[33]  Geodesics in piecewise linear manifolds , 1976 .

[34]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[35]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..