Sensor Network Localization Using Least Squares Kernel Regression

This paper considers the sensor network localization problem using signal strength. Unlike range-based methods signal strength information is stored in a kernel matrix. Least squares regression methods are then used to get an estimate of the location of unknown sensors. Locations are represented as complex numbers with the estimate function consisting of a linear weighted sum of kernel entries. The regression estimates have similar performance to previous localization methods using kernel classification methods, but at reduced complexity. Simulations are conducted to test the performance of the least squares kernel regression algorithm. Finally, the paper discusses on-line implementations of the algorithm, methods to improve the performance of the regression algorithm, and using kernels to extract other information from distributed sensor networks.

[1]  H. Vincent Poor,et al.  Distributed learning in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[2]  Rebecca N. Wright,et al.  Privacy-preserving distributed k-means clustering over arbitrarily partitioned data , 2005, KDD '05.

[3]  H. Vincent Poor,et al.  Regression in sensor networks: training distributively with alternating projections , 2005, SPIE Optics + Photonics.

[4]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[5]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[6]  Bruno Sinopoli,et al.  A kernel-based learning approach to ad hoc sensor network localization , 2005, TOSN.

[7]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[8]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[9]  Anthony Kuh,et al.  Dynamic Ad Hoc Network Localization Using Online Least Squares Kernel Subspace Methods , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  Henry Tirri,et al.  A Statistical Modeling Approach to Location Estimation , 2002, IEEE Trans. Mob. Comput..

[11]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[12]  Anthony Kuh,et al.  Ad Hoc Sensor Network Localization using Distributed Kernel Regression Algorithms , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[13]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[14]  Gavin C. Cawley,et al.  A Greedy Training Algorithm for Sparse Least-Squares Support Vector Machines , 2002, ICANN.

[15]  Jeffrey Hightower,et al.  Real-Time Error in Location Modeling for Ubiquitous Computing , 2001 .

[16]  David A. Maltz,et al.  A performance comparison of multi-hop wireless ad hoc network routing protocols , 1998, MobiCom '98.

[17]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[18]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[19]  Kuh Anthony,et al.  Sensor Network Localization Using Pattern Recognition and Least Squares Kernel Methods , 2005 .

[20]  Deborah Estrin,et al.  GPS-less low-cost outdoor localization for very small devices , 2000, IEEE Wirel. Commun..

[21]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[22]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[23]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[24]  Ted Kremenek,et al.  A Probabilistic Room Location Service for Wireless Networked Environments , 2001, UbiComp.

[25]  Samuel Madden,et al.  Distributed regression: an efficient framework for modeling sensor network data , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[26]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[27]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[28]  Robert D. Nowak,et al.  Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.

[29]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[30]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[31]  de Bastiaan Johannes Kruif Function approximation for learning control : a key sample based approach , 2004 .

[32]  Zoran Obradovic,et al.  The distributed boosting algorithm , 2001, KDD '01.

[33]  S. Seidel,et al.  914 MHz path loss prediction models for indoor wireless communications in multifloored buildings , 1992 .

[34]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[35]  Shie Mannor,et al.  The kernel recursive least-squares algorithm , 2004, IEEE Transactions on Signal Processing.

[36]  Ivan Stojmenovic,et al.  Position-based routing in ad hoc networks , 2002, IEEE Commun. Mag..

[37]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.