Temperature and division of heat in a pin-on-disc frictional device—Exact analytical solution

A 3D analytical solution is proposed in this paper to determine the temperature and the partition coefficient of heat flux generated by friction in a pin-on-disc tribometer. This solution is valid without restriction on the rotational velocity of the disc. It is given under an explicit form, thus avoiding any iterative calculation. A validation is performed by comparing the results with those available for a circular heat source in rectilinear motion. Thermal maps of the disc are presented for different values of its rotational velocity. The evolution of the temperature and the heat partition coefficient are presented and analysed as a function of the disc velocity and the cooling conditions.

[1]  Ward O. Winer,et al.  Transient Temperatures in the Vicinity of an Asperity Contact , 1985 .

[2]  J. Greenwood An interpolation formula for flash temperatures , 1991 .

[3]  H. A. Francis Interfacial Temperature Distribution Within a Sliding Hertzian Contact , 1971 .

[4]  Najib Laraqi,et al.  3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance , 1999 .

[5]  J. F. Archard,et al.  The temperature of rubbing surfaces , 1959 .

[6]  E. J. Patula Steady-State Temperature Distribution in a Rotating Roll Subject to Surface Heat Fluxes and Convective Cooling , 1981 .

[7]  J. Bos,et al.  Frictional heating of tribological contacts , 1995 .

[8]  J. C. Jaeger Moving sources of heat and the temperature at sliding contacts , 1943, Journal and proceedings of the Royal Society of New South Wales.

[9]  Najib Laraqi,et al.  Temperature and thermal resistance in frictional devices , 2004 .

[10]  N. DesRuisseaux,et al.  Temperature in Semi-Infinite and Cylindrical Bodies Subjected to Moving Heat Sources and Surface Cooling , 1970 .

[11]  H. Blok LES TEMPERATURES DE SURFACE DANS DES CONDITIONS DE GRAISSAGE SOUS EXTREME PRESSION , 1937 .

[12]  Températures de contact et coefficient de partage de flux généré par frottement sec entre deux solides. Approche nouvelle de la génération de flux , 1992 .

[13]  F. Kennedy,et al.  Maximum and Average Flash Temperatures in Sliding Contacts , 1994 .

[14]  Ranga Komanduri,et al.  Analysis of heat partition and temperature distribution in sliding systems , 2001 .

[15]  Najib Laraqi,et al.  Phénomène de constriction thermique dans les contacts glissants , 1996 .

[16]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[17]  J. P. Bardon,et al.  Bases physiques des conditions de contact thermique imparfait entre milieux en glissement relatif , 1994 .

[18]  N. Laraqi An Exact Explicit Analytical Solution of the Steady-State Temperature in a Half Space Subjected to a Moving Circular Heat Source , 2003 .

[19]  S. Kakac,et al.  Heat conduction: Second edition , 1985 .

[20]  J. Barber,et al.  The Division of Frictional Heat—A Guide to the Nature of Sliding Contact , 1984 .

[21]  A. Floquet,et al.  Combination of finite element and integral transform techniques in a heat conduction quasi‐static problem , 1986 .

[22]  G. N. Sandor,et al.  The distribution of friction heat between a stationary pin and a rotating cylinder , 1972 .

[23]  N. Laraqi,et al.  Velocity and Relative Contact Size Effects on the Thermal Constriction Resistance in Sliding Solids , 1997 .