Orbifolds as stacks

The first goal of this survey paper is to argue that if orbifolds are groupoids, then the collection of orbifolds and their maps has to be thought of as a 2-category. Compare this with the classical definition of Satake and Thurston of orbifolds as a 1-category of sets with extra structure and/or with the "modern" definition of orbifolds as proper etale Lie groupoids up to Morita equivalence. The second goal is to describe two complementary ways of thinking of orbifolds as a 2-category: 1. the weak 2-category of foliation Lie groupoids, bibundles and equivariant maps between bibundles and 2. the strict 2-category of Deligne-Mumford stacks over the category of smooth manifolds.

[1]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[2]  D. Metzler Topological and Smooth Stacks , 2003, math/0306176.

[3]  James F. Glazebrook,et al.  INTRODUCTION TO FOLIATIONS AND LIE GROUPOIDS (Cambridge Studies in Advanced Mathematics 91) , 2005 .

[4]  I. Satake The Gauss-Bonnet Theorem for V-manifolds , 1957 .

[5]  Presentations of noneffective orbifolds , 2003, math/0302182.

[6]  M. Romagny Group Actions on Stacks and Applications , 2005 .

[7]  P. Xu,et al.  Twisted K theory of differentiable stacks , 2003, math/0306138.

[8]  Loop Groupoids, Gerbes, and Twisted Sectors on Orbifolds , 2001, math/0110207.

[9]  I. Sata ON A GENERALIZATION OF THE NOTION OF MANIFOLD BY , 2004 .

[10]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[11]  Ieke Moerdijk,et al.  Introduction to Foliations and Lie Groupoids: Prerequisites , 2003 .

[12]  Dorette A. Pronk,et al.  Etendues and stacks as bicategories of fractions , 1996 .

[13]  F. Borceux Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .

[14]  G. Skandalis,et al.  Morphismes $K$-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes) , 1987 .

[15]  A. Haefliger On the space of morphisms between étale groupoids , 2007, 0707.4673.

[16]  Chern–Weil map for principal bundles over groupoids , 2004, math/0401420.

[17]  N. T. Zung PROPER GROUPOIDS AND MOMENTUM MAPS: LINEARIZATION, AFFINITY, AND CONVEXITY GROUPOPROPRES ET APPLICATIONS MOMENT: LIN ´ EARISATION, CARACT ` ERE AFFINE, ET CONVEXIT ´ E , 2004, math/0407208.

[18]  On a notion of maps between orbifolds I. Function spaces , 2006, math/0603671.

[19]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[20]  I. Moerdijk Orbifolds as groupoids: an introduction , 2002, math/0203100.

[21]  M. Wodzicki Lecture Notes in Math , 1984 .

[22]  A. Haefliger Homotopy and integrability , 1971 .