YAPI ZEMİN ETKİLEŞİMİNİN BETONARME YAPILARIN TASARIMINA ETKİSİ (SOIL-STRUCTURE INTERACTION EFFECT ON DESIGN OF REINFORCED CONCRETE STRUCTURES)

During the design of reinforced concrete structures, soil-structure interaction is neglected with the assumption of fixed base columns usually considering the subsoil as a rigid medium. However, subsoil is a medium that deforms under load from the structure, exposed to stress and generates a reaction against the effects suffered. In this study, effects of soil-structure interaction on design of reinforced concrete structures are investigated. For this purpose, an 8-storey frame previously examined in the literature is considered. The effect of subsoil under the structure is considered using Winkler and Modified Vlasov Model in addition to rigid soil-structure assumption. An interface is developed by authors to use SAP2000 software with MATLAB simultaneously for the analysis. In this way, SAP2000 software gains the ability of the analysis of mat foundation using Modified Vlasov model. Periods, base shear forces, column axial forces, column bending moments and column longitudinal reinforcement ratios are compared for rigid soil-structure, Winkler and Modified Vlasov Models. In the end of study, it is observed that soil-structure interaction has a significant effect on the structural design of reinforced concrete structures.