Marginally Specified Logistic‐Normal Models for Longitudinal Binary Data

Summary. Likelihood‐based inference for longitudinal binary data can be obtained using a generalized linear mixed model (Breslow, N. and Clayton, D. G., 1993, Journal of the American Statistical Association88, 9–25; Wolfinger, R. and O'Connell, M., 1993, Journal of Statistical Computation and Simulation48, 233–243), given the recent improvements in computational approaches. Alternatively, Fitzmaurice and Laird (1993, Biometrika80, 141–151), Molenberghs and Lesaffre (1994, Journal of the American Statistical Association89, 633–644), and Heagerty and Zeger (1996, Journal of the American Statistical Association91, 1024–1036) have developed a likelihood‐based inference that adopts a marginal mean regression parameter and completes full specification of the joint multivariate distribution through either canonical and/or marginal higher moment assumptions. Each of these marginal approaches is computationally intense and currently limited to small cluster sizes. In this manuscript, an alternative parameterization of the logistic‐normal random effects model is adopted, and both likelihood and estimating equation approaches to parameter estimation are studied. A key feature of the proposed approach is that marginal regression parameters are adopted that still permit individual‐level predictions or contrasts. An example is presented where scientific interest is in both the mean response and the covariance among repeated measurements.

[1]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[4]  T. Louis Estimating a population of parameter values using Bayes and empirical Bayes methods , 1984 .

[5]  Ronald S. Burt,et al.  A cautionary note , 1986 .

[6]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[7]  N M Laird,et al.  Missing data in longitudinal studies. , 1988, Statistics in medicine.

[8]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[9]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[10]  S. Lipsitz,et al.  Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association , 1991 .

[11]  J. Kalbfleisch,et al.  A Comparison of Cluster-Specific and Population-Averaged Approaches for Analyzing Correlated Binary Data , 1991 .

[12]  Y. Qu,et al.  Latent Variable Models for Clustered Dichotomous Data with Multiple Subclusters , 1992 .

[13]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .

[14]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[15]  P. Diggle,et al.  Modelling multivariate binary data with alternating logistic regressions , 1993 .

[16]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[17]  Peter McCullagh,et al.  REML Estimation with Exact Covariance in the Logistic Mixed Model , 1993 .

[18]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[19]  E. Korn,et al.  Regression analysis with clustered data. , 1994, Statistics in medicine.

[20]  W. Eaton,et al.  Ten‐year course of schizophrenia—the Madras longitudinal study , 1994, Acta psychiatrica Scandinavica.

[21]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[22]  M. Pepe,et al.  A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data , 1994 .

[23]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[24]  B. Leroux,et al.  Efficiency of regression estimates for clustered data. , 1996, Biometrics.

[25]  S. Zeger,et al.  Marginal Regression Models for Clustered Ordinal Measurements , 1996 .

[26]  M. Lindstrom,et al.  A survey of methods for analyzing clustered binary response data , 1996 .

[27]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[28]  J. Booth,et al.  Standard Errors of Prediction in Generalized Linear Mixed Models , 1998 .