Cryptography with cycling chaos

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[3]  Michael Field Equivariant dynamical systems , 1980 .

[4]  Martin Golubitsky,et al.  Iterates of maps with symmetry , 1988 .

[5]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[6]  Grebogi,et al.  Using chaos to direct trajectories to targets. , 1990, Physical review letters.

[7]  B. M. Fulk MATH , 1992 .

[8]  Hayes,et al.  Experimental control of chaos for communication. , 1994, Physical review letters.

[9]  Kennedy,et al.  Predictive Poincaré control: A control theory for chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Martin Golubitsky,et al.  Heteroclinic cycles in rings of coupled cells , 2000 .

[11]  L. Kocarev,et al.  Logistic map as a block encryption algorithm , 2001 .

[12]  Ljupco Kocarev,et al.  Analysis of some recently proposed chaos-based encryption algo-rithms , 2001 .