Generalization of superconnection in noncommutative geometry
暂无分享,去创建一个
[1] V. Abramov. On a graded q-differential algebra , 2005, math/0509481.
[2] M. Dubois-Violette. Lectures on differentials, generalized differentials and on some examples related to theoretical physics , 2000, math/0005256.
[3] R. Kerner,et al. Exterior differentials of higher order and their covariant generalization , 2000, math/0004162.
[4] M. Dubois-Violette. Lectures on graded differential algebras and noncommutative geometry , 1999, math/9912017.
[5] R. Kerner,et al. q–ANALOG OF HOMOLOGICAL ALGEBRA , 1999 .
[6] M. Kapranov. On the q-analog of homological algebra , 1996, q-alg/9611005.
[7] J. A. Azcárraga,et al. Group theoretical foundations of fractional supersymmetry , 1995, hep-th/9506177.
[8] Michèle Vergne,et al. Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .
[9] M. Atiyah,et al. Topological Lagrangians and cohomology , 1990 .
[10] Edward Witten,et al. Topological quantum field theory , 1988 .
[11] D. Quillen,et al. Superconnections, thom classes, and equivariant differential forms , 1986 .
[12] R. Kerner. Graded gauge theory , 1983 .