Development of Nondestructive Elemental Analysis System for Hayabusa2 Samples Using Muonic X-rays

[1]  M. K. Kubo,et al.  Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples , 2022, Science.

[2]  F. Terui,et al.  On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective , 2022, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[3]  C. Focsa,et al.  Link between Polycyclic Aromatic Hydrocarbon Size and Aqueous Alteration in Carbonaceous Chondrites Revealed by Laser Mass Spectrometry , 2022, ACS Earth and Space Chemistry.

[4]  M. Asplund,et al.  The chemical make-up of the Sun: A 2020 vision , 2021, Astronomy & Astrophysics.

[5]  K. Lodders Relative Atomic Solar System Abundances, Mass Fractions, and Atomic Masses of the Elements and Their Isotopes, Composition of the Solar Photosphere, and Compositions of the Major Chondritic Meteorite Groups , 2021, Space Science Reviews.

[6]  I. Umegaki,et al.  A novel challenge of nondestructive analysis on OGATA Koan’s sealed medicine by muonic X-ray analysis , 2021, Journal of Natural Medicines.

[7]  M. K. Kubo,et al.  Nondestructive High-Sensitivity Detections of Metallic Lithium Deposited on a Battery Anode Using Muonic X-rays. , 2020, Analytical chemistry.

[8]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[9]  J. Elsila,et al.  Analyses of Aliphatic Aldehydes and Ketones in Carbonaceous Chondrites. , 2019, ACS earth & space chemistry.

[10]  A. Verchovsky,et al.  The alteration history of the Jbilet Winselwan CM carbonaceous chondrite: An analog for C‐type asteroid sample return , 2018, Meteoritics & Planetary Science.

[11]  S. Tachibana,et al.  Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC , 2017, Scientific Reports.

[12]  N. Kawamura,et al.  Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex IV: The Muon Facility , 2017 .

[13]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[14]  A. Hillier,et al.  Probing beneath the surface without a scratch — Bulk non-destructive elemental analysis using negative muons , 2016 .

[15]  N. Kawamura,et al.  Elemental Analysis System with Negative-Muon Beam , 2015 .

[16]  Yasuhiro Miyake,et al.  Nondestructive elemental depth-profiling analysis by muonic X-ray measurement. , 2015, Analytical chemistry.

[17]  H. Sakamoto,et al.  A Highly intense DC muon source, MuSIC and muon CLFV search , 2014 .

[18]  M. K. Kubo,et al.  A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam , 2014, Scientific Reports.

[19]  M. Lancaster,et al.  First measurements of muon production rate using a novel pion capture system at MuSIC , 2013 .

[20]  Hiroshi Fujimori,et al.  J-PARC muon source, MUSE , 2009 .

[21]  David Cyranoski,et al.  Beamline bonanza for Japanese researchers , 2008, Nature.

[22]  Tomoki Nakamura,et al.  Bulk mineralogical changes of hydrous micrometeorites during heating in the upper atmosphere at temperatures below 1000 °C , 2006 .

[23]  S. Pizzarello The chemistry of life's origin: a carbonaceous meteorite perspective. , 2006, Accounts of chemical research.

[24]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[25]  D. Groom,et al.  MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV , 2001 .

[26]  W. McDonough,et al.  The composition of the Earth , 1995 .

[27]  L. Rosen Relevance of particle accelerators to national goals. , 1971, Science.