High aspect ratio composite structures with 48.5% thermal neutron detection efficiency

The pillar structured thermal neutron detector is based on the combination of high aspect ratio silicon p-i-n pillars surrounded by the neutron converter material 10B. By etching high aspect ratio pillar structures into silicon, the result is a device that efficiently absorbs the thermal neutron flux by accommodating a large volume fraction of 10B within the silicon pillar array. Here, we report a thermal neutron detection efficiency of 48.5% using a 50 μm pillar array with an aspect ratio of 25:1.

[1]  J. K. Shultis,et al.  Microstructured semiconductor neutron detectors , 2009 .

[2]  L. F. Voss,et al.  Gamma discrimination in pillar structured thermal neutron detectors , 2012, Defense + Commercial Sensing.

[3]  D. Mcgregor,et al.  High-efficiency microstructured semiconductor neutron detectors that are arrayed, dual-integrated, and stacked. , 2012, Applied Radiation and Isotopes.

[4]  Rebecca J. Nikolic,et al.  6:1 aspect ratio silicon pillar based thermal neutron detector filled with 10 B , 2008 .

[5]  Rebecca J. Nikolic,et al.  Comparison of CF4 and SF6 based plasmas for ECR etching of isotopically enriched 10boron films , 2009 .

[6]  J. I. Brand,et al.  A class of boron-rich solid-state neutron detectors , 2002 .

[7]  Douglas S. McGregor,et al.  Thin-film-coated bulk GaAs detectors for thermal and fast neutron measurements , 2001 .

[8]  Rebecca J. Nikolic,et al.  Conformal filling of silicon micropillar platform with b10oron , 2008 .

[9]  N. Deo,et al.  Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector: Efficiency and Gamma Discrimination , 2008, IEEE Transactions on Nuclear Science.

[10]  R. J. Nikolic,et al.  Roadmap for high efficiency solid-state neutron detectors , 2005, SPIE Optics East.

[11]  Yaron Danon,et al.  Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency , 2012 .

[12]  Rebecca J. Nikolic,et al.  Planarization of high aspect ratio p-i-n diode pillar arrays for blanket electrical contacts , 2009 .

[13]  James J.-Q. Lu,et al.  Towards high efficiency solid-state thermal and fast neutron detectors , 2012 .

[14]  Sina Balkir,et al.  The all boron carbide diode neutron detector: Comparison with theory , 2006 .

[15]  T. F. Wang,et al.  Nine element Si-based pillar structured thermal neutron detector , 2010, Optical Engineering + Applications.

[16]  Yaron Danon,et al.  Boron filling of high aspect ratio holes by chemical vapor deposition for solid-state neutron detector applications , 2012 .

[17]  Christopher S. Martin,et al.  Boron-coated straws as a replacement for 3He-based neutron detectors , 2011 .

[18]  D. Mcgregor,et al.  Enhanced variant designs and characteristics of the microstructured solid-state neutron detector , 2011 .

[19]  R. Klann,et al.  Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films , 2003 .

[20]  Rajendra Dahal,et al.  Hexagonal boron nitride epitaxial layers as neutron detector materials , 2011 .

[21]  D. Mcgregor,et al.  Improved High Efficiency Stacked Microstructured Neutron Detectors Backfilled With Nanoparticle $^{6}$LiF , 2012, IEEE Transactions on Nuclear Science.

[22]  N. Deo,et al.  Etching of 10Boron with SF6-based Electron Cyclotron Resonance Plasmas for Pillar-Structured Thermal Neutron Detectors , 2010 .

[23]  E. Medvedev,et al.  IR spectroscopic study of the phase composition of boric acid as a component of glass batch , 2007 .