Artificial Bee Colony Inspired Algorithm Applied to Fusion Research in a Grid Computing Environment

Artificial Bee Colony (ABC) algorithm is an optimisation algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used to optimise the equilibrium of confined plasma in a nuclear fusion device. Plasma physics research for fusion still presents open problems that need a large computing capacity to be solved. This optimisation process is a long time consuming process so an environment like grid computing has to be used, thus the first step is to adapt and extend the ABC algorithm to use the grid capabilities. In this work we present a modification of the original ABC algorithm, its adaption to a grid computing environment and the application of this algorithm to the equilibrium optimisation process.

[1]  Bu-Sung Lee,et al.  Efficient Hierarchical Parallel Genetic Algorithms using Grid computing , 2007, Future Gener. Comput. Syst..

[2]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems , 2007, IFSA.

[3]  Miguel A. Vega-Rodríguez,et al.  Grid-Enabled Mutation-Based Genetic Algorithm to Optimise Nuclear Fusion Devices , 2009, EUROCAST.

[4]  Alfonso Tarancón,et al.  Ion Orbits and Ion Confinement Studies on ECRH Plasmas in TJ-II Stellarator , 2006 .

[5]  Miguel Cárdenas-Montes,et al.  EUFORIA - Simulation environment for ITER fusion research , 2008 .

[6]  Miguel A. Vega-Rodríguez,et al.  Using a Genetic Algorithm and the Grid to Improve Transport Levels in the TJ-II Stellarator , 2008, 2008 International Symposium on Parallel and Distributed Computing.

[7]  Eduardo Huedo,et al.  A Grid-Oriented Genetic Algorithm , 2005, EGC.

[8]  Alok Singh,et al.  An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem , 2009, Appl. Soft Comput..

[9]  Miguel A. Vega-Rodríguez,et al.  Grid-Oriented Scatter Search Algorithm , 2009, ICANNGA.

[10]  Miguel A. Vega-Rodríguez,et al.  Exploration of the Conjecture of Bateman Using Particle Swarm Optimisation and Grid Computing , 2009, 2009 Eighth International Symposium on Parallel and Distributed Computing.

[11]  Enrique Alba,et al.  Heterogeneous Computing and Parallel Genetic Algorithms , 2002, J. Parallel Distributed Comput..

[12]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[13]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[14]  Miguel A. Vega-Rodríguez,et al.  Grid Computing in Order to Implement a Three-Dimensional Magnetohydrodynamic Equilibrium Solver for Plasma Confinement , 2008, 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008).

[15]  Enrique Alba,et al.  MALLBA: A Library of Skeletons for Combinatorial Optimisation (Research Note) , 2002, Euro-Par.

[16]  J. Freidberg,et al.  Plasma Physics and Fusion Energy , 2007 .

[17]  Paul Bellan,et al.  Fundamentals of Plasma Physics , 2006 .

[18]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[19]  El-Ghazali Talbi,et al.  Grid computing for parallel bioinspired algorithms , 2006, J. Parallel Distributed Comput..

[20]  Sonia Sharama,et al.  Grid Computing , 2004, Lecture Notes in Computer Science.

[21]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[22]  Marc Parizeau,et al.  Distributed Beagle: An Environment For Parallel And Distributed Evolutionary Computations , 2003 .

[23]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[24]  Ben Paechter,et al.  A Framework for Distributed Evolutionary Algorithms , 2002, PPSN.