Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature

[1]  Larry L. Hench,et al.  An Introduction to Bioceramics , 2013 .

[2]  G. Stan,et al.  Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure , 2010 .

[3]  C. V. van Blitterswijk,et al.  Biomimetic calcium phosphate coatings on recombinant spider silk fibres , 2010, Biomedical materials.

[4]  G. Stan,et al.  Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering , 2010, Journal of materials science. Materials in medicine.

[5]  L. Fassina,et al.  In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds. , 2010, Tissue engineering. Part A.

[6]  G. Stan,et al.  Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings , 2009 .

[7]  E. Saiz,et al.  Interfaces in graded coatings on titanium-based implants. , 2009, Journal of biomedical materials research. Part A.

[8]  I. Mihailescu,et al.  Biocompatible and bioactive nanostructured glass coatings synthesized by pulsed laser deposition: In vitro biological tests , 2009 .

[9]  S. Kalainathan,et al.  Growth and characterization of nano‐crystalline hydroxyapatite at physiological conditions , 2008 .

[10]  R. Brow,et al.  Bioactive borate glass coatings for titanium alloys , 2008, Journal of materials science. Materials in medicine.

[11]  J. Jansen,et al.  Growth Behavior of Rat Bone Marrow Cells on RF Magnetron Sputtered Bioglass- and Calcium Phosphate Coatings , 2007 .

[12]  F. Habraken,et al.  On the ion and neutral atom bombardment of the growth surface in magnetron plasma sputter deposition , 2007 .

[13]  D. Macovei,et al.  Preparation and characterization of increased-efficiency photocatalytic TiO2–2xNx thin films , 2007 .

[14]  D. Macovei,et al.  On the hydrophilicity of nitrogen-doped TiO2 thin films , 2007 .

[15]  Se-Bum Paik,et al.  Crystalline hydroxyapatite thin films produced at room temperature - An opposing radio frequency magnetron sputtering approach , 2007 .

[16]  F. Habraken,et al.  One-dimensional analysis of the rate of plasma-assisted sputter deposition , 2007 .

[17]  J. Ferreira,et al.  Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass. , 2007, Acta biomaterialia.

[18]  Ann E Rundell,et al.  Influence of biologically inspired nanometer surface roughness on antigen–antibody interactions for immunoassay–biosensor applications , 2006, International journal of nanomedicine.

[19]  M. Vallet‐Regí,et al.  Vitreous SiO2-CaO coatings on Ti6Al4V alloys: reactivity in simulated body fluid versus osteoblast cell culture. , 2006, Acta biomaterialia.

[20]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[21]  S. Dew,et al.  3D numerical simulation of gas heating effects in a magnetron sputter deposition system , 2006 .

[22]  J. Ferreira,et al.  Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. , 2006, Biomaterials.

[23]  D. Shi,et al.  Introduction to Bioceramics , 2005 .

[24]  S. Berg,et al.  Fundamental understanding and modeling of reactive sputtering processes , 2005 .

[25]  Y. Miura,et al.  A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses , 2004 .

[26]  D. Güttler,et al.  Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation , 2004 .

[27]  Milenko Markovic,et al.  Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material , 2004, Journal of research of the National Institute of Standards and Technology.

[28]  Hideaki Adachi,et al.  Thin Film Materials Technology: Sputtering of Compound Materials , 2004 .

[29]  M. Pérez-Amor,et al.  The role of the reactive atmosphere in pulsed laser deposition of bioactive glass films , 2004 .

[30]  Thomas J Webster,et al.  Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. , 2003, Journal of biomedical materials research. Part A.

[31]  A. I. Mardare,et al.  Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering , 2003 .

[32]  M. Hupa,et al.  Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses , 2002, Journal of materials science. Materials in medicine.

[33]  G W Marshall,et al.  In vitro behavior of silicate glass coatings on Ti6A14V. , 2002, Biomaterials.

[34]  C. Alcock Thermochemical Processes: Principles and Models , 2000 .

[35]  M. Nogami,et al.  Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. , 1999, Biomaterials.

[36]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[37]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[38]  C. Teodorescu,et al.  An approximation of the Voigt I profile for the fitting of experimental X-ray absorption data , 1994 .

[39]  R. Happonen,et al.  BIOACTIVE GLASSES: CLINICAL APPLICATIONS , 1993 .

[40]  T. Kokubo A/W GLASS-CERAMIC: PROCESSING AND PROPERTIES , 1993 .

[41]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[42]  M. White,et al.  Postsynthesis modification of alum inophosphates by reaction with silicon tetrachloride , 1990 .

[43]  T. Kokubo Surface chemistry of bioactive glass-ceramics , 1990 .

[44]  C. Rey,et al.  The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study , 1989, Calcified Tissue International.

[45]  R. Swanepoel Determination of the thickness and optical constants of amorphous silicon , 1983 .

[46]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[47]  Gultekin Goller,et al.  The effect of bond coat on mechanical properties of plasma sprayed bioglass-titanium coatings , 2004 .

[48]  Eugenia Valsami-Jones,et al.  Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. , 2004, Biomaterials.

[49]  M. Kitabatake,et al.  1 – Thin Film Materials and Devices , 2004 .

[50]  Eduardo Saiz,et al.  Bioactive glass coatings for orthopedic metallic implants , 2003 .

[51]  Anna Tampieri,et al.  Carbonated hydroxyapatite as bone substitute , 2003 .

[52]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[53]  L. Hench Bioactive Ceramics: Theory and Clinical Applications , 1994 .

[54]  S. Sakka,et al.  Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation , 1993 .

[55]  B. Bunker,et al.  Multinuclear nuclear magnetic resonance and Raman investigation of sodium borosilicate glass structures , 1990 .

[56]  R. Kirkpatrick,et al.  The short range structure of sodium phosphate glasses I. MAS NMR studies , 1990 .

[57]  D. Goldman Evaluation of the ratios of bridging to nonbridging oxygens in simple silicate glasses by electron spectroscopy for chemical analysis , 1986 .