Lower Bounds on the Error Rate of LDPC Code Ensembles

The ensemble of regular low-definition parity-check (LDPC) codes is considered. Using concentration results on the weight distribution, lower bounds on the error rate of a random code in the ensemble are derived. These bounds hold with some confidence level. Combining these results with known lower bounds on the error exponent, confidence intervals on the error exponent, under maximum-likelihood (ML) decoding, are obtained. Over a large range of channel parameter and transmission rate values, when the graph connectivity is sufficiently large, the upper bound of the interval approaches the lower bound, and the probability that the error exponent is within the interval can be arbitrarily close to one. In fact, in this case the true error exponent approaches the maximum between the random coding and the expurgated random coding exponents, with probability that approaches one.

[1]  David Sankoff,et al.  AN INEQUALITY FOR PROBABILITIES , 1967 .

[2]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[3]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[4]  Simon Litsyn,et al.  Distance distributions in ensembles of irregular low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[5]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[6]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[7]  V.W.S. Chan,et al.  Principles of Digital Communication and Coding , 1979 .

[8]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[9]  Edward A. Bender,et al.  Multivariate Asymptotics for Products of Large Powers with Applications to Lagrange Inversion , 1999, Electron. J. Comb..

[10]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[11]  A. Barg,et al.  Distance distribution of binary codes and the error probability of decoding , 2004, IEEE Transactions on Information Theory.

[12]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.

[13]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.

[14]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[15]  Dominique de Caen,et al.  A lower bound on the probability of a union , 1997, Discret. Math..

[16]  V. Rathi,et al.  On the Asymptotic Weight and Stopping Set Distribution of Regular LDPC Ensembles , 2005, IEEE Transactions on Information Theory.

[17]  Neri Merhav,et al.  Lower bounds on the error probability of block codes based on improvements on de Caen's inequality , 2004, IEEE Transactions on Information Theory.

[18]  Simon Litsyn,et al.  On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.

[19]  Rudiger Urbanke,et al.  Fixed Points and Stability of Density Evolution , 2004, Commun. Inf. Syst..

[20]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[21]  Adam Shwartz,et al.  Large Deviations For Performance Analysis , 2019 .

[22]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[23]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.

[24]  David Burshtein,et al.  Lower bounds on the spectrum and error rate LDPC code ensembles , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[25]  Robert G. Gallager,et al.  The random coding bound is tight for the average code (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[26]  Vishwambhar Rathi,et al.  On the asymptotic weight distribution of regular LDPC ensembles , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[27]  Holger Boche,et al.  Spectral Factorization for Polynomial Spectral Densities—Impact of Dimension , 2007, IEEE Transactions on Information Theory.