Optical Effect Modulation in Polarized Raman Spectroscopy of Transparent Layered α-MoO3.

Optical anisotropy, which is quantified by birefringence (Δn) and linear dichroism (Δk), can significantly modulate the angle-resolved polarized Raman spectroscopy (ARPRS) response of anisotropic layered materials (ALMs) by external interference. This work studies the separate modulation of birefringence on the ARPRS response and the intrinsic response by selecting transparent birefringent crystal α-MoO3 as an excellent platform. It is found that there are several anomalous ARPRS responses in α-MoO3 that cannot be reproduced by the real Raman tensor widely used in non-absorbing materials; however, they can be well explained by considering the birefringence-induced Raman selection rules. Moreover, the systematic thickness-dependent study indicates that birefringence modulates the ARPRS response to render an interference pattern; however, the amplitude of modulation is considerably lower than that by linear dichroism as occurred in black phosphorous. This weak modulation brings convenience to the crystal orientation determination of transparent ALMs. Combining the atomic vibrational pattern and bond polarizability model, the intrinsic ARPRS response of α-MoO3 is analyzed, giving the physical origins of the Raman anisotropy. This study employs α-MoO3 as an example, although it is generally applicable to all transparent birefringent ALMs.

[1]  Q. Bao,et al.  Birefringence in the Polarized Raman Scattering of Biaxial van der Waals α‐MoO3 , 2022, Advanced Optical Materials.

[2]  Yuehua Wu,et al.  Reliable and broad-range layer identification of Au-assisted exfoliated large area MoS2 and WS2 using reflection spectroscopic fingerprints , 2022, Nano Research.

[3]  Dong Liu,et al.  Unusual Deformation and Fracture in Gallium Telluride Multilayers , 2022, The journal of physical chemistry letters.

[4]  Q. Bao,et al.  Polarized Raman Scattering of In‐Plane Anisotropic Phonon Modes in α‑MoO3 , 2022, Advanced Optical Materials.

[5]  Jonathan A. Fan,et al.  Ultrahigh-Quality Infrared Polaritonic Resonators Based on Bottom-Up-Synthesized van der Waals Nanoribbons. , 2022, ACS nano.

[6]  N. Xu,et al.  Controlling and Focusing In‐Plane Hyperbolic Phonon Polaritons in α‐MoO3 with a Curved Plasmonic Antenna , 2021, Advanced materials.

[7]  H. Bechtel,et al.  Ultrabroadband Nanocavity of Hyperbolic Phonon–Polaritons in 1D-Like α-MoO3 , 2021, ACS Photonics.

[8]  Nannan Mao,et al.  Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. , 2021, The journal of physical chemistry letters.

[9]  S. Xiao,et al.  Planar refraction and lensing of highly confined polaritons in anisotropic media , 2021, Nature Communications.

[10]  A. Castellanos-Gómez,et al.  In-plane anisotropic optical and mechanical properties of two-dimensional MoO3 , 2021, npj 2D Materials and Applications.

[11]  M. Fuhrer,et al.  Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO3 and Polar Dielectric Interfaces. , 2021, Nano letters.

[12]  A. Davydov,et al.  Substrate-mediated hyperbolic phonon polaritons in MoO3 , 2020, Nanophotonics.

[13]  Zhibing Li,et al.  In-Plane Anisotropic Raman Spectroscopy of van der Waals α-MoO3 , 2020, Journal of Physical Chemistry C.

[14]  G. Si,et al.  Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities , 2020, Nature Communications.

[15]  Dingtao Ma,et al.  Recent advances in anisotropic two-dimensional materials and device applications , 2020, Nano Research.

[16]  Huarui Sun,et al.  Thickness-Dependent Ultralow In-Plane Thermal Conductivity of Chemical Vapor-Deposited SnSe2 Nanofilms: Implications for Thermoelectrics , 2020 .

[17]  Xiaoli Li,et al.  Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences. , 2020, Science bulletin.

[18]  P. Jarillo-Herrero,et al.  Configure polaritons in twisted $\alpha$-MoO3 , 2020, 2004.14588.

[19]  G. Si,et al.  Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers , 2020, Nature.

[20]  Q. Bao,et al.  Infrared Permittivity of the Biaxial van der Waals Semiconductor α‐MoO3 from Near‐ and Far‐Field Correlative Studies , 2019, Advanced materials.

[21]  P. Gao,et al.  Broad‐Spectral‐Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in α‐MoO3 , 2019, Advanced materials.

[22]  M. Kuball,et al.  Effects of interlayer interactions on the nanoindentation response of freely suspended multilayer gallium telluride , 2019, Nanotechnology.

[23]  S. Tongay,et al.  Passivation of Layered Gallium Telluride by Double Encapsulation with Graphene , 2019, ACS omega.

[24]  Y. Bando,et al.  Emerging in‐plane anisotropic two‐dimensional materials , 2019, InfoMat.

[25]  N. Xu,et al.  A mid-infrared biaxial hyperbolic van der Waals crystal , 2018, Science Advances.

[26]  Shui-Tong Lee,et al.  In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal , 2018, Nature.

[27]  Xuesong Li,et al.  Centimeter-sized 2D α-MoO3 single crystal: growth, Raman anisotropy, and optoelectronic properties , 2018, 2D Materials.

[28]  N. Xu,et al.  Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides , 2018, Advanced materials.

[29]  N. Zhang,et al.  Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2. , 2017, ACS nano.

[30]  R. Leonelli,et al.  Polarization-Resolved Raman Study of Bulk-like and Davydov-Induced Vibrational Modes of Exfoliated Black Phosphorus. , 2016, Nano letters.

[31]  M. Grundmann,et al.  Raman tensor elements of β-Ga2O3 , 2016, Scientific Reports.

[32]  Lianming Tong,et al.  Birefringence-Directed Raman Selection Rules in 2D Black Phosphorus Crystals. , 2016, Small.

[33]  A. R. T. Nugraha,et al.  Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. , 2016, Nano letters.

[34]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[35]  R. Adelung,et al.  Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide , 2014 .

[36]  G. Pezzotti,et al.  Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces , 2011 .

[37]  Ian T. Ferguson,et al.  Raman scattering study on anisotropic property of wurtzite GaN , 2009 .

[38]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  M. Py,et al.  Intra- and interlayer contributions to the lattice vibrations in MoO3 , 1981 .