Effects of operation parameters on flow boiling characteristics of heat sink cooling systems with reentrant porous microchannels

[1]  Matthew Law,et al.  Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels , 2014 .

[2]  Yong Tang,et al.  Effects of structural parameters on flow boiling performance of reentrant porous microchannels , 2014 .

[3]  De-jie Liang,et al.  Flow boiling characteristics in porous heat sink with reentrant microchannels , 2014 .

[4]  P. Cheng,et al.  Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer , 2014 .

[5]  A. Sommers,et al.  Using micro-structural surface features to enhance the convective flow boiling heat transfer of R-134a on aluminum , 2013 .

[6]  Masoud Rahimi,et al.  Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study , 2013 .

[7]  Xu Jinliang,et al.  Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions , 2013 .

[8]  Yong Chan Kim,et al.  Flow boiling heat transfer coefficients and pressure drop of FC-72 in microchannels , 2012 .

[9]  S. Chou,et al.  Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels – A comparative study , 2011 .

[10]  Yan Sun,et al.  Subcooled flow boiling heat transfer from microporous surfaces in a small channel , 2011 .

[11]  A. Helali Effects of water contamination on sub-cooled flow boiling heat transfer , 2011 .

[12]  Satish G. Kandlikar,et al.  History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review , 2012 .

[13]  R. Peterson,et al.  Enhanced Boiling Heat Transfer in Parallel Microchannels With Diffusion Brazed Wire Mesh , 2010, IEEE Transactions on Components and Packaging Technologies.

[14]  John R. Thome,et al.  Critical heat flux in multi-microchannel copper elements with low pressure refrigerants , 2010 .

[15]  Sangkwon Jeong,et al.  Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel , 2009 .

[16]  T. Fisher,et al.  Effects of carbon nanotube coating on flow boiling in a micro-channel , 2009 .

[17]  M. Koç,et al.  Micro-manufacturing of micro-scale porous surface structures for enhanced heat transfer applications: an experimental process optimization study , 2009 .

[18]  N. Koratkar,et al.  Nanostructured copper interfaces for enhanced boiling. , 2008, Small.

[19]  Suresh V. Garimella,et al.  Microchannel size effects on local flow boiling heat transfer to a dielectric fluid , 2008 .

[20]  Y. Peles,et al.  Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities , 2008 .

[21]  C. Pan,et al.  Stabilization of flow boiling in microchannel heat sinks with a diverging cross-section design , 2008 .

[22]  Mamoru Mabuchi,et al.  Microfluidic flows in metallic microchannels fabricated by the spacer method , 2008 .

[23]  P. Cheng,et al.  Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels , 2008 .

[24]  Yoav Peles,et al.  Local measurement of flow boiling in structured surface microchannels , 2007 .

[25]  Jürgen Schmidt,et al.  Experimental investigation of transient boiling heat transfer in microchannels , 2007 .

[26]  A. Mosyak,et al.  Periodic boiling in parallel micro-channels at low vapor quality , 2006 .

[27]  Jl L. Xu,et al.  Flow and heat transfer in microchannels with rough wall surface , 2006 .

[28]  Wei Zhang,et al.  Flow instability and transient flow patterns inside intercrossed silicon microchannel array in a micro-timescale , 2006 .

[29]  Satish G. Kandlikar,et al.  Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites , 2006 .

[30]  Albert Mosyak,et al.  Explosive boiling of water in parallel micro-channels , 2005 .

[31]  Thomas W. Kenny,et al.  Phase change phenomena in silicon microchannels , 2005 .

[32]  Jinliang Xu,et al.  Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes , 2005 .

[33]  S. Tzeng,et al.  EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER IN SINTERED POROUS HEAT SINK , 2004 .

[34]  S. Kandlikar,et al.  An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels , 2004 .

[35]  A. Nassiopoulou,et al.  Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology , 2003 .

[36]  I. Mudawar,et al.  Pumpless Loop for Narrow Channel and Micro-Channel Boiling compact cooling system is examined which capitalizes upon fluid density differences , 2003 .

[37]  I. Mudawar,et al.  Measurement and prediction of pressure drop in two-phase micro-channel heat sinks , 2003 .

[38]  I. Mudawar,et al.  Flow boiling heat transfer in two-phase micro-channel heat sinks––I. Experimental investigation and assessment of correlation methods , 2003 .

[39]  S. M. You,et al.  Flow Boiling Heat Transfer From Plain and Microporous Coated Surfaces in Subcooled FC-72 , 2001 .

[40]  A. van den Berg,et al.  Micromachining of buried micro channels in silicon , 2000, Journal of Microelectromechanical Systems.

[41]  R. Jaeger,et al.  Formation of silicon reentrant cavity heat sinks using anisotropic etching and direct wafer bonding , 1993, IEEE Electron Device Letters.

[42]  J. Taylor An Introduction to Error Analysis , 1982 .

[43]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[44]  R. Webb The Evolution of Enhanced Surface Geometries for Nucleate Boiling , 1981 .

[45]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .