A Hidden Signal in the Ulam Sequence

ABSTRACT The Ulam sequence is defined as a1 = 1, a2 = 2, and an being the smallest integer that can be written as the sum of two distinct earlier elements in a unique way. This gives Ulam remarked that understanding the sequence, which has been described as “quite erratic,” seems difficult and indeed nothing is known. We report the empirical discovery of a surprising global rigidity phenomenon: there seems to exist a real α ∼ 2.5714474995… such that supported on a subset of . Indeed, for the first 107 elements of Ulam’s sequence, The same phenomenon arises for some other initial conditions a1, a2: the distribution functions look very different from each other and have curious shapes. A similar but more subtle phenomenon seems to arise in Lagarias’ variant of MacMahon’s “primes of measurement” sequence.

[1]  R. Steven,et al.  CONJECTURES ABOUT s-ADDITIVE SEQUENCES , 1989 .

[2]  K. Soundararajan,et al.  On the distribution of imaginary parts of zeros of the Riemann zeta function, II , 2004, math/0405459.

[3]  Verna Gardiner,et al.  On Certain Sequences of Integers Defined by Sieves , 1956 .

[4]  Raymond Queneau Sur les suites s-additives , 1972 .

[5]  Edsger W. Dijkstra,et al.  Selected Writings on Computing: A personal Perspective , 1982, Texts and Monographs in Computer Science.

[6]  Eugene Spiegel,et al.  The Regularity of Some 1-Additive Sequences , 1994, J. Comb. Theory, Ser. A.

[7]  P. Gallagher Pair correlation of zeros of the zeta function. , 1985 .

[8]  Edsger W. Dijkstra More About the Function “fusc” (A Sequel to EWD570) , 1982 .

[9]  András Sárközy,et al.  Unsolved problems in number theory , 2001, Period. Math. Hung..

[10]  Steven R. Finch,et al.  On the Regularity of Certain 1-Additive Sequences , 1992, J. Comb. Theory, Ser. A.

[11]  Bernardo Recaman Questions on a Sequence of Ulam , 1973 .

[12]  Justin Gilmer On the Density of Happy Numbers , 2013, Integers.

[13]  Bruce Reznick Regularity Properties of the Stern Enumeration of the Rationals , 2006 .

[14]  N. Sloane The on-line encyclopedia of integer sequences , 2018, Notices of the American Mathematical Society.

[15]  S. Ulam Problems in modern mathematics , 1964 .

[16]  Philip E. Gibbs An Efficient Method for Computing Ulam Numbers , 2015 .

[17]  Steven R. Finch,et al.  Patterns in l-Additive Sequences , 1992, Exp. Math..

[18]  S. ULAMt,et al.  Combinatorial Analysis in Infinite Sets and Some Physical Theories , 2012 .

[19]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[20]  K. F. Roth On Certain Sets of Integers , 1953 .

[21]  Edmund Landau Über die Nullstellen der Zetafunktion , 1912 .

[22]  Julien Cassaigne,et al.  A Class of 1-Additive Sequences and Quadratic Recurrences , 1995, Exp. Math..

[23]  C. A. Rogers,et al.  Computers in Number Theory , 1972 .

[24]  A. Wiman,et al.  Über die Nullstellen der FunktionenEa(x) , 1905 .

[25]  M. Stern Ueber eine zahlentheoretische Funktion. , 1858 .