깊이맵은 3D 입체영상의 생성을 위해 중요한 요소이다. 하지만 깊이 카메라를 이용하여 획득한 깊이맵들은 낮은 해상도를 갖는 단점이 있기 때문에 이를 고해상도로 변환하는 연구들이 활발하게 진행되고 있다. 이러한 연구들은 일반적으로 PSNR, Sharpness Degree, Blur Metric 등과 같은 객관적인 평가방법으로 성능을 검증해왔다. 이러한 평가방법 이외에 DIBR로 가상시점(virtual view)을 생성하여 주관적으로 평가하는 연구도 있으나, 입체영상을 생성하여 깊이맵 업샘플링의 성능을 분석하는 것은 많지 않다. 본 논문에서는 다양한 깊이맵 업샘플링 방법들을 이용하여 생성된 입체영상의 주관적 평가와 업샘플링 방법의 객관적 평가 결과의 상관관계 및 선형회귀법을 이용하여 관련성을 분석한다. 실험결과에서는 에지 PSNR이 시각적 피로도와의 상관관계가 가장 높고, Blur Metric은 가장 낮다는 것을 보여준다. 또한 선형회귀에서는 최적의 입체영상을 얻을 수 있는 객관적 평가의 가중치를 구하고, 기존 또는 새로운 업샘플링 알고리즘의 3D성능을 예측할 수 있는 공식을 보여준다.