Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh

consistent with the d 18 O record from the Guliya ice cap in the West Kunlun; the features of interest were all formed by glacial and fluvial processes subsequent to marine isotope stage 5e, with the youngest features having formed during the early Holocene Optimum. This ‘‘near-field,’’ morphochronological slip rate is averaged over many earthquake cycles and is hence little affected by interseismic strain. It is kinematically consistent with other, somewhat lower, geomorphic slip rate measurements to the east. The average rate, and lower bounds obtained from alternate interpretational models, 18.4 mm/yr, cannot be reconciled with the most rece geodetic measurements (� 7 mm/yr), suggesting that interseismic strain and interactions with adjacent faults may lead to disparate geologic and geodetic rate estimates. This late Pleistocene-Holocene, morphochronologic rate would imply that, at this longitude, the Altyn Tagh Fault, on the north edge of Tibet, might absorb almost as much of India’s convergence relative to Siberia as the Himalayan Main Frontal Thrust does on the southern edge of the plateau. INDEX TERMS: 1035 Geochemistry: Geochronology; 1208 Geodesy and Gravity: Crustal movements—intraplate (8110); 8102 Tectonophysics: Continental contractional orogenic belts; 8107 Tectonophysics: Continental neotectonics; KEYWORDS: slip rates, cosmogenic dating, Indo-Asian collision

[1]  J. Avouac,et al.  Holocene Hydrological Changes Inferred from Alluvial Stream Entrenchment in North Tian Shan (Northwestern China) , 2004, The Journal of Geology.

[2]  S. Graham,et al.  Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault , 2004 .

[3]  Jinglin Wan,et al.  Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: Constraints on timing of uplift of northern margin of the Tibetan Plateau , 2003 .

[4]  G. Gehrels,et al.  Detrital-zircon geochronology of the northeastern Tibetan plateau , 2003 .

[5]  T. Harrison,et al.  Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau , 2003 .

[6]  P. Tapponnier,et al.  Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks , 2003 .

[7]  T. Harrison,et al.  Direct dating of left‐lateral deformation along the Red River shear zone, China and Vietnam , 2003 .

[8]  S. Gilder,et al.  New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin , 2002 .

[9]  Andrew D. Hanson,et al.  Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation , 2002 .

[10]  Michel Klein,et al.  MASS ACCUMULATION RATES IN ASIA DURING THE CENOZOIC , 2002 .

[11]  M. Strecker,et al.  Low slip rates and long-term preservation of geomorphic features in Central Asia , 2002, Nature.

[12]  M. Caffee,et al.  Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: Defined by cosmogenic radionuclide dating of moraines , 2002 .

[13]  R. Armijo,et al.  Long-term elasticity in the continental lithosphere; modelling the Aden Ridge propagation and the Anatolian extrusion process , 2002 .

[14]  Frederick J. Ryerson,et al.  The 14 November 2001, Mw = 7.8 Kokoxili Earthquake in Northern Tibet (Qinghai Province, China) , 2002 .

[15]  M. Caffee,et al.  Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology , 2002 .

[16]  B. Poisson Impact du climat et de la tectonique sur l'évolution géomorphologique d'un piémont - Exemple du piémont Nord du Tian Shan depuis la fin du Pléistocène , 2002 .

[17]  Bertrand Meyer,et al.  Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China) , 2001 .

[18]  S. Gilder,et al.  Oligo‐Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia , 2001 .

[19]  S. Graham,et al.  Initiation and Long-Term Slip History of the Altyn Tagh Fault , 2001 .

[20]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[21]  J Ramón Arrowsmith,et al.  Late Holocene earthquake history of the central Altyn Tagh fault, China , 2001 .

[22]  Paul A. Rosen,et al.  Transient strain accumulation and fault interaction in the eastern California shear zone , 2001 .

[23]  Lewis A. Owen,et al.  Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone , 2001 .

[24]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[25]  B. Burchfiel,et al.  Large-scale crustal deformation of the Tibetan Plateau , 2001 .

[26]  M. Caffee,et al.  Slow Rates of Rock Surface Erosion and Sediment Production across the Namib Desert and Escarpment, Southern Africa , 2001 .

[27]  N. Arnaud,et al.  Jurassic to Cenozoic exhumation history of the Altyn Tagh range , 2001 .

[28]  Jingsui Yang,et al.  Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountains, northwest China , 2001 .

[29]  J. Stone Air pressure and cosmogenic isotope production , 2000 .

[30]  Thomas K. Rockwell,et al.  Paleoseismology of the Johnson Valley, Kickapoo, and Homestead Valley Faults: Clustering of Earthquakes in the Eastern California Shear Zone , 2000 .

[31]  M. Caffee,et al.  Uniform slip‐rate along the Kunlun Fault: Implications for seismic behaviour and large‐scale tectonics , 2000 .

[32]  X. Pichon,et al.  Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations , 2000 .

[33]  Robert W. King,et al.  Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation , 2000 .

[34]  Jérôme Lavé,et al.  Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal , 2000 .

[35]  Demitris Paradissis,et al.  Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus , 2000 .

[36]  J. Freymueller,et al.  Geodetic evidence for a low slip rate in the Altyn Tagh fault system , 2000, Nature.

[37]  W. Holt Correlated crust and mantle strain fields in Tibet , 2000 .

[38]  U. Biffi,et al.  Magnitude of post–Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China , 2000 .

[39]  P. Tapponnier,et al.  Teleseismic Shear wave splitting and lithospheric anisotropy beneath and across the Altyn Tagh Fault , 1999 .

[40]  Peltzer,et al.  Evidence of Nonlinear Elasticity of the Crust from the Mw7.6 Manyi (Tibet) Earthquake. , 1999, Science.

[41]  Frederick J. Ryerson,et al.  Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan Fault, Gansu, China , 1999 .

[42]  R. Anderson,et al.  Dating fluvial terraces with and profiles: application to the Wind River, Wyoming , 1999 .

[43]  P. Tapponnier,et al.  Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China , 1998 .

[44]  Masson,et al.  Tomographic evidence for localized lithospheric shear along the altyn tagh fault , 1998, Science.

[45]  Bertrand Meyer,et al.  Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet plateau , 1998 .

[46]  M. Caffee,et al.  Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China) , 1998 .

[47]  J. W. Beck,et al.  INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP , 1998, Radiocarbon.

[48]  Peter Molnar,et al.  Active deformation of Asia : From kinematics to dynamics , 1997 .

[49]  Peter Molnar,et al.  The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults , 1997 .

[50]  J. M. Landwehr,et al.  Duration and Structure of the Past Four Interglaciations , 1997, Quaternary Research.

[51]  R. Anderson,et al.  EROSION RATES OF ALPINE BEDROCK SUMMIT SURFACES DEDUCED FROM IN SITU 10BE AND 26AL , 1997 .

[52]  E. Mosley‐Thompson,et al.  Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core , 1997 .

[53]  R. Lacassin,et al.  Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand , 1997 .

[54]  E. Sobel,et al.  Thrusting and exhumation around the margins of the western Tarim basin during the India‐Asia collision , 1997 .

[55]  J. Freymueller,et al.  GPS measurements of present-day convergence across the Nepal Himalaya , 1997, Nature.

[56]  F. Métivier,et al.  Mass transfer between eastern Tien Shan and adjacent basins (central Asia): constraints on regional tectonics and topography , 1997 .

[57]  G. Peltzer,et al.  Present‐day kinematics of Asia derived from geologic fault rates , 1996 .

[58]  N. Arnaud,et al.  Tectonics of Western Tibet, between the Tarim and the Indus , 1996 .

[59]  R. Anderson,et al.  Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al , 1996 .

[60]  U. Schärer,et al.  The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina , 1995 .

[61]  P. Bierman,et al.  Improving in Situ Cosmogenic Chronometers , 1995, Quaternary Research.

[62]  T. Harrison,et al.  Tertiary structural evolution of the Gangdese Thrust System, southeastern Tibet , 1994 .

[63]  B. Burchfiel,et al.  Quaternary Climate Change and the Formation of River Terraces across Growing Anticlines on the North Flank of the Tien Shan, China , 1994, The Journal of Geology.

[64]  Paul Tapponnier,et al.  Kinematic model of active deformation in central Asia , 1993 .

[65]  K. Nishiizumi,et al.  Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides , 1992 .

[66]  Kerry E Sieh,et al.  Surficial offsets on the Central and Eastern Garlock Fault associated with prehistoric earthquakes , 1991 .

[67]  W. Bull,et al.  Geomorphic Responses to Climatic Change , 1991 .

[68]  F. Gasse,et al.  A 13,000-year climate record from western Tibet , 1991, Nature.

[69]  D. Lal,et al.  Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models , 1991 .

[70]  K. Nishiizumi,et al.  Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history , 1991 .

[71]  N. Arnaud,et al.  NOUVELLES DONNEES THERMOCHRONOLOGIQUES SUR LE BATHOLITE DU KUNLUN ET L'HISTOIRE THERMIQUE DU NORD DU PLATEAU TIBETAIN , 1991 .

[72]  K. Nishiizumi,et al.  Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks , 1989 .

[73]  G. Peltzer,et al.  Magnitude of Late Quaternary Left-Lateral Displacements Along the North Edge of Tibet , 1989, Science.

[74]  R. Armijo,et al.  Late Cenozoic right‐lateral strike‐slip faulting in southern Tibet , 1989 .

[75]  G. Peltzer,et al.  Formation and evolution of strike‐slip faults, rifts, and basins during the India‐Asia Collision: An experimental approach , 1988 .

[76]  Philip England,et al.  FINITE STRAIN CALCULATIONS OF CONTINENTAL DEFORMATION .2. COMPARISON WITH THE INDIA-ASIA COLLISION ZONE , 1986 .

[77]  Richard H. Jahns,et al.  Holocene activity of the San Andreas fault at Wallace Creek , 1984 .

[78]  J. D. Hays,et al.  The orbital theory of Pleistocene climate : Support from a revised chronology of the marine δ^ O record. , 1984 .

[79]  N. Ambraseys,et al.  Value of Historical Records of Earthquakes , 1971, Nature.

[80]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .