A generalization of Zubov's method to perturbed systems

We present a generalization of Zubov's method to perturbed differential equations. The goal is to characterize the domain of attraction of a set which is uniformly locally asymptotically stable under all admissible time varying perturbations. We show that in this general setting the straightforward generalization of the classical Zubov's equations has a unique viscosity solution which characterizes the robust domain of attraction as a suitable sublevel set.

[1]  Fabian Wirth,et al.  Robustness of nonlinear systems subject to time-varying perturbations , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[2]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[3]  Pierpaolo Soravia Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints , 1999, Differential and Integral Equations.

[4]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[5]  Felix F. Wu,et al.  Stability regions of nonlinear autonomous dynamical systems , 1988 .

[6]  Courtney Coleman Addendum to: Local trajectory equivalence of differential systems , 1966 .

[7]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[8]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[9]  A. Vicino,et al.  On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .

[10]  Gebhardt,et al.  Chaos transition despite linear stability. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  L. Grüne On the Relation between Discounted and Average Optimal Value Functions , 1998 .

[12]  C. Storey,et al.  Numerical determination of domains of attraction for electrical power systems using the method of Zubov , 1981 .

[13]  M. Falcone A maximum time approach to the computation of robust domains of attraction , 1999 .

[14]  Fabian R. Wirth,et al.  Robustness Analysis of Domains of Attraction of Nonlinear Systems , 1998 .

[15]  V. Jurdjevic Geometric control theory , 1996 .

[16]  L. Grüne Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization , 2002 .

[17]  F. Camilli,et al.  A regularization of Zubov’s equation for robust domains of attraction , 2001 .

[18]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[19]  Courtney Coleman Local trajectory equivalence of differential systems , 1965 .

[20]  B. Aulbach,et al.  Asymptotic stability regions via extensions of Zubov's method—I , 1983 .

[21]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[22]  Fabian R. Wirth,et al.  A Generalization of Zubov's Method to Perturbed Systems , 2001, SIAM J. Control. Optim..

[23]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[24]  M. Bardi,et al.  Hamilton-Jacobi equations with singular boundary conditions on a free boundary and applications to differential games , 1991 .

[25]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[26]  F. Wilson The structure of the level surfaces of a Lyapunov function , 1967 .

[27]  L. Trefethen,et al.  Low-dimensional models of subcritical transition to turbulence , 1997 .

[28]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[29]  Pierpaolo Soravia Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. I. Equations of unbounded and degenerate control problems without uniqueness , 1999 .

[30]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[31]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .