Spreaders for immersion nucleate boiling cooling of a computer chip with a central hot spot

Abstract This paper numerically investigates the performance of composite spreaders comprised of Cu substrates and Cu micro-porous surfaces of different thicknesses for immersion cooling of 10 × 10 mm underlying computer chip with a 2 × 2 mm central hot spot. The local heat flux at the hot spot is three times the chip’s surface average outside the hot spot. The thickness of the Cu substrate changes from 1.6 to 3.2 mm and that of the Cu micro-porous surface changes from 80 to 197 μm. The spreaders are cooled by saturation nucleate boiling of PF-5060 dielectric liquid. The local values of the nucleate boiling heat transfer coefficients on the various Cu micro-porous surfaces are based on pool boiling experimental measurements. Results demonstrated the effectiveness of immersion cooling nucleate boiling for mitigating the effect of the hot spot. The spreaders decrease the maximum surface temperature and the temperature gradient on the chip surface and increase the dissipated thermal power by the chip and removed from the spreader surface. Increasing the thickness of the Cu substrate and/or decreasing the thickness of the Cu micro-porous surface increases the total thermal power removed, the chip surface temperature and the spreader’s footprint area.

[1]  S. M. You,et al.  Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72 , 1997 .

[2]  A. Howard,et al.  An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces , 1997 .

[3]  S. M. You,et al.  Pool Boiling Heat Transfer From Plain and Microporous, Square Pin Finned Surfaces in Saturated FC-72 , 1999, Heat Transfer: Volume 4.

[4]  Mohamed S. El-Genk,et al.  Pool boiling in saturated and subcooled HFE-7100 dielectric fluid from a porous graphite surface , 2004 .

[5]  Mohamed S. El-Genk,et al.  Thermal Analyses of Composite Copper/ Porous Graphite Spreaders for Immersion Cooling Applications , 2005 .

[6]  M. Ohadi,et al.  Thermal Performance of Micro-Structured Evaporation Surfaces: Application to Cooling of High Flux Microelectronics , 2005 .

[7]  G. P. Peterson,et al.  An Introduction to Heat Pipes: Modeling, Testing, and Applications , 1994 .

[8]  I. Mudawar,et al.  Orientation effects on pool boiling critical heat flux (CHF) and modeling of CHF for near-vertical surfaces , 1999 .

[9]  M. El-Genk,et al.  Composite Spreader for Cooling Computer Chip With Non-Uniform Heat Dissipation , 2008, IEEE Transactions on Components and Packaging Technologies.

[10]  M. El-Genk,et al.  Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip , 2003 .

[11]  J. L. Parker,et al.  Enhanced saturation and subcooled boiling of FC-72 dielectric liquid , 2005 .

[12]  H. Honda,et al.  Effects of Fin Geometry on Boiling Heat Transfer from Silicon Chips with Micro-Pin-Fins Immersed in FC-72 , 2003 .

[13]  J. L. Parker,et al.  Efficient spreaders for cooling high-power computer chips , 2007 .

[14]  M. El-Genk,et al.  Enhancement of Saturation Boiling of PF-5060 on Microporous Copper Dendrite Surfaces , 2010 .

[15]  H. Honda,et al.  Enhanced Boiling of FC-72 on Silicon Chips with Micro-Pin-Fins and Submicron-Scale Roughness , 2002 .

[16]  J. L. Parker,et al.  Enhanced boiling of HFE-7100 dielectric liquid on porous graphite , 2005 .

[17]  Sheng-Chih Lin,et al.  Cool Chips: Opportunities and Implications for Power and Thermal Management , 2008, IEEE Transactions on Electron Devices.

[18]  H. Honda,et al.  Advances in enhanced boiling heat transfer from electronic components , 2003 .

[19]  M. El-Genk,et al.  Enhanced nucleate boiling on copper micro-porous surfaces , 2010 .

[20]  Duu-Jong Lee,et al.  Pool Boiling of FC-72 and HFE-7100 , 2001 .

[21]  Chih-Kuang Yu,et al.  Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72 , 2007 .

[22]  T. Fisher,et al.  Effects of carbon nanotube arrays on nucleate pool boiling , 2007 .

[23]  S. M. You,et al.  EFFECTS OF HEATER SIZE AND ORIENTATION ON POOL BOILING HEAT TRANSFER FROM MICROPOROUS COATED SURFACES , 2001 .