暂无分享,去创建一个
Krikamol Muandet | Sanparith Marukatat | Motonobu Kanagawa | Sorawit Saengkyongam | Krikamol Muandet | Motonobu Kanagawa | Sorawit Saengkyongam | S. Marukatat
[1] Le Song,et al. A Hilbert Space Embedding for Distributions , 2007, Discovery Science.
[2] Thorsten Joachims,et al. Counterfactual Risk Minimization: Learning from Logged Bandit Feedback , 2015, ICML.
[3] Kevin Leyton-Brown,et al. Deep IV: A Flexible Approach for Counterfactual Prediction , 2017, ICML.
[4] C. Baker. Joint measures and cross-covariance operators , 1973 .
[5] Bernhard Schölkopf,et al. A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..
[6] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[7] Uri Shalit,et al. Learning Representations for Counterfactual Inference , 2016, ICML.
[8] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[9] D. Rubin,et al. The central role of the propensity score in observational studies for causal effects , 1983 .
[10] John Langford,et al. Doubly Robust Policy Evaluation and Learning , 2011, ICML.
[11] Koby Crammer,et al. A theory of learning from different domains , 2010, Machine Learning.
[12] Thorsten Joachims,et al. Recommendations as Treatments: Debiasing Learning and Evaluation , 2016, ICML.
[13] Olivier Chapelle,et al. Expected reciprocal rank for graded relevance , 2009, CIKM.
[14] D. Horvitz,et al. A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .
[15] John Langford,et al. Off-policy evaluation for slate recommendation , 2016, NIPS.
[16] Jennifer L. Hill,et al. Bayesian Nonparametric Modeling for Causal Inference , 2011 .
[17] Uri Shalit,et al. Bounding and Minimizing Counterfactual Error , 2016, ArXiv.
[18] Alexander J. Smola,et al. Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.
[19] Le Song,et al. Kernel Bayes' rule: Bayesian inference with positive definite kernels , 2013, J. Mach. Learn. Res..
[20] Joaquin Quiñonero Candela,et al. Counterfactual reasoning and learning systems: the example of computational advertising , 2013, J. Mach. Learn. Res..
[21] J. Mata,et al. Counterfactual decomposition of changes in wage distributions using quantile regression , 2005 .
[22] Bernhard Schölkopf,et al. Towards a Learning Theory of Causation , 2015, 1502.02398.
[23] V. Chernozhukov,et al. Inference on Counterfactual Distributions , 2009, 0904.0951.
[24] Krikamol Muandet,et al. Minimax Estimation of Kernel Mean Embeddings , 2016, J. Mach. Learn. Res..
[25] Karsten M. Borgwardt,et al. Learning via Hilbert Space Embedding of Distributions , 2007 .
[26] T. Shakespeare,et al. Observational Studies , 2003 .
[27] John Langford,et al. Exploration scavenging , 2008, ICML '08.
[28] J. Heckman,et al. Longitudinal Analysis of Labor Market Data: Alternative methods for evaluating the impact of interventions , 1985 .
[29] Bernhard Schölkopf,et al. Domain Adaptation under Target and Conditional Shift , 2013, ICML.
[30] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[31] Gilles Blanchard,et al. Statistical properties of Kernel Prinicipal Component Analysis , 2019 .
[32] Michael I. Jordan,et al. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..
[33] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[34] Hans-Peter Kriegel,et al. Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.
[35] David M. Blei,et al. Causal Inference for Recommendation , 2016 .
[36] D. Rubin. Causal Inference Using Potential Outcomes , 2005 .
[37] Le Song,et al. A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .
[38] C. Cassel,et al. Some results on generalized difference estimation and generalized regression estimation for finite populations , 1976 .