Multichromosomal median and halving problems under different genomic distances

BackgroundGenome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances.ResultsWe settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems.ConclusionThis theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes.

[1]  David Sankoff,et al.  Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes , 2008, ISMB.

[2]  P. Pevzner,et al.  Colored de Bruijn Graphs and the Genome Halving Problem , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[3]  Thomas Stützle,et al.  Reactive Stochastic Local Search Algorithms for the Genomic Median Problem , 2007, EvoCOP.

[4]  David Sankoff,et al.  The effect of massive gene loss following whole genome duplication on the algorithmic reconstruction of the ancestral populus diploid. , 2008, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[5]  Pavel A. Pevzner,et al.  Transforming men into mice (polynomial algorithm for genomic distance problem) , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[6]  Xin Chen,et al.  Assignment of orthologous genes via genome rearrangement , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[7]  Enno Ohlebusch,et al.  A linear time algorithm for the inversion median problem in circular bacterial genomes , 2007, J. Discrete Algorithms.

[8]  David Sankoff,et al.  Decompositions of Multiple Breakpoint Graphs and Rapid Exact Solutions to the Median Problem , 2008, WABI.

[9]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[10]  David Sankoff,et al.  Multichromosomal Genome Median and Halving Problems , 2008, WABI.

[11]  David Sankoff,et al.  The Reconstruction of Doubled Genomes , 2003, SIAM J. Comput..

[12]  Alberto Caprara The Reversal Median Problem , 2003, INFORMS J. Comput..

[13]  Jens Stoye,et al.  A Unifying View of Genome Rearrangements , 2006, WABI.

[14]  Richard Friedberg,et al.  Efficient sorting of genomic permutations by translocation, inversion and block interchange , 2005, Bioinform..

[15]  S. Otto,et al.  Polyploid incidence and evolution. , 2000, Annual review of genetics.

[16]  W. Ewens,et al.  The chromosome inversion problem , 1982 .

[17]  Glenn Tesler,et al.  Efficient algorithms for multichromosomal genome rearrangements , 2002, J. Comput. Syst. Sci..

[18]  David Sankoff,et al.  Genome Halving with Double Cut and Join , 2009, APBC.

[19]  Ron Shamir,et al.  Two Notes on Genome Rearrangement , 2003, J. Bioinform. Comput. Biol..

[20]  Julia Mixtacki,et al.  Genome Halving under DCJ Revisited , 2008, COCOON.

[21]  David Sankoff,et al.  Gene Loss under Neighborhood Selection Following Whole genome Duplication and the Reconstruction of the Ancestral Populus genome , 2009, J. Bioinform. Comput. Biol..

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  M. Middendorf,et al.  Solving the Preserving Reversal Median Problem , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[24]  Jens Stoye,et al.  HP Distance Via Double Cut and Join Distance , 2008, CPM.

[25]  P. Pevzner,et al.  Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.

[26]  Chuan Yi Tang,et al.  SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges , 2006, Nucleic Acids Res..

[27]  David Sankoff,et al.  The ABCs of MGR with DCJ , 2008, Evolutionary bioinformatics online.

[28]  David Sankoff,et al.  Genome Halving with an Outgroup , 2006, Evolutionary bioinformatics online.

[29]  Guillaume Fertin,et al.  Combinatorics of Genome Rearrangements , 2009, Computational molecular biology.

[30]  Pavel A. Pevzner,et al.  Transforming men into mice: the Nadeau-Taylor chromosomal breakage model revisited , 2003, RECOMB '03.

[31]  P. Berman,et al.  On Some Tighter Inapproximability Results , 1998, Electron. Colloquium Comput. Complex..

[32]  David Bryant,et al.  The complexity of the breakpoint median problem , 1998 .

[33]  Jens Stoye,et al.  On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios , 2008, RECOMB-CG.

[34]  Ron Shamir,et al.  The median problems for breakpoints are NP-complete , 1998, Electron. Colloquium Comput. Complex..

[35]  David Sankoff,et al.  The Median Problem for Breakpoints in Comparative Genomics , 1997, COCOON.

[36]  Chuan Yi Tang,et al.  An Efficient Algorithm for Sorting by Block-Interchanges and Its Application to the Evolution of Vibrio Species , 2005, J. Comput. Biol..

[37]  Macha Nikolski,et al.  Genome rearrangements: a correct algorithm for optimal capping , 2007, Inf. Process. Lett..

[38]  David Sankoff,et al.  Descendants of Whole Genome Duplication within Gene Order Phylogeny , 2008, J. Comput. Biol..

[39]  R. Guigó,et al.  Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia , 2006, Nature.