Demo Abstract: PrOLoc: Resilient Localization with Private Observers Using Partial Homomorphic Encryption

This demo abstract presents PrOLoc, a localization system thatcombines partially homomorphic encryption with a new way ofstructuring the localization problem to enable efficient and accurate computation of a target’s location while preserving the privacy of the observers.

[1]  Srdjan Capkun,et al.  Secure RSS-based localization in sensor networks , 2011 .

[2]  Léo Ducas,et al.  FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second , 2015, EUROCRYPT.

[3]  Radha Poovendran,et al.  SeRLoc: secure range-independent localization for wireless sensor networks , 2004, WiSe '04.

[4]  Abhi Shelat,et al.  Efficient Secure Computation with Garbled Circuits , 2011, ICISS.

[5]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 2: Basic Applications , 2001 .

[6]  Elaine Shi,et al.  Privacy-Preserving Aggregation of Time-Series Data , 2011, NDSS.

[7]  Jie Yang,et al.  Multi-lateral privacy-preserving localization in pervasive environments , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[8]  Catuscia Palamidessi,et al.  Optimal Geo-Indistinguishable Mechanisms for Location Privacy , 2014, CCS.

[9]  Andrew J. Blumberg,et al.  VPriv: Protecting Privacy in Location-Based Vehicular Services , 2009, USENIX Security Symposium.

[10]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[11]  Min Wu,et al.  Gradient descent approach for secure localization in resource constrained wireless sensor networks , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Ahmad-Reza Sadeghi,et al.  TASTY: tool for automating secure two-party computations , 2010, CCS '10.

[13]  R. Langley Dilution of Precision , 1999 .

[14]  Craig Gentry,et al.  Implementing Gentry's Fully-Homomorphic Encryption Scheme , 2011, EUROCRYPT.

[15]  John A. Stankovic,et al.  Secure walking GPS: a secure localization and key distribution scheme for wireless sensor networks , 2010, WiSec '10.

[16]  Berk Sunar,et al.  Exploring the Feasibility of Fully Homomorphic Encryption , 2015, IEEE Transactions on Computers.

[17]  Farinaz Koushanfar,et al.  Privacy preserving localization for smart automotive systems , 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[18]  Yehuda Lindell,et al.  Secure Multiparty Computation for Privacy-Preserving Data Mining , 2009, IACR Cryptol. ePrint Arch..

[19]  Michael Naehrig,et al.  Private Computation on Encrypted Genomic Data , 2014, LATINCRYPT.

[20]  Vaidy S. Sunderam,et al.  Secure multiparty aggregation with differential privacy: a comparative study , 2013, EDBT '13.

[21]  Yih-Chun Hu,et al.  Wormhole Detection in Wireless Ad Hoc Networks , 2002 .

[22]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[23]  Shafi Goldwasser,et al.  Machine Learning Classification over Encrypted Data , 2015, NDSS.

[24]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[25]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[26]  Moni Naor,et al.  Our Data, Ourselves: Privacy Via Distributed Noise Generation , 2006, EUROCRYPT.

[27]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[28]  Nils Ole Tippenhauer,et al.  UWB-based Secure Ranging and Localization , 2008 .

[29]  Martin J. Wainwright,et al.  Privacy Aware Learning , 2012, JACM.

[30]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[31]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[32]  Paulo Tabuada,et al.  Secure State Estimation Against Sensor Attacks in the Presence of Noise , 2015, IEEE Transactions on Control of Network Systems.