Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn's technique

We derive improved upper bounds on the number of crossing-free straight-edge spanning cycles (also known as Hamiltonian tours and simple polygonizations) that can be embedded over any specific set of N points in the plane. More specifically, we bound the ratio between the number of spanning cycles (or perfect matchings) that can be embedded over a point set and the number of triangulations that can be embedded over it. The respective bounds are O(1.8181N) for cycles and O(1.1067N) for matchings. These imply a new upper bound of O(54.543N) on the number of crossing-free straight-edge spanning cycles that can be embedded over any specific set of N points in the plane (improving upon the previous best upper bound O(68.664N)). Our analysis is based on a weighted variant of Kasteleyn's linear algebra technique.

[1]  Raimund Seidel,et al.  A better upper bound on the number of triangulations of a planar point set , 2003, J. Comb. Theory, Ser. A.

[2]  Micha Sharir,et al.  On degrees in random triangulations of point sets , 2010, SoCG '10.

[3]  Maciej Liskiewicz,et al.  The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes , 2003, Theor. Comput. Sci..

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Leonidas J. Guibas,et al.  On translating a set of rectangles , 1980, STOC '80.

[6]  Marc Noy,et al.  Counting triangulations of almost-convex polygons , 1997, Ars Comb..

[7]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[8]  M. Sharir,et al.  On the number of crossing-free matchings, (cycles, and partitions) , 2006, SODA 2006.

[9]  Ferran Hurtado,et al.  On the Number of Plane Geometric Graphs , 2007, Graphs Comb..

[10]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[11]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[12]  Micha Sharir,et al.  Random triangulations of planar point sets , 2006, SCG '06.

[13]  Csaba D. Tóth,et al.  Counting Plane Graphs: Flippability and Its Applications , 2011, WADS.

[14]  Shin-ichi Tanigawa,et al.  Fast enumeration algorithms for non-crossing geometric graphs , 2008, SCG '08.

[15]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[16]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[17]  Csaba D. Tóth,et al.  Bounds on the Maximum Multiplicity of Some Common Geometric Graphs , 2013, SIAM J. Discret. Math..

[18]  Micha Sharir,et al.  Counting Triangulations of Planar Point Sets , 2009, Electron. J. Comb..

[19]  Marc Noy,et al.  Lower bounds on the number of crossing-free subgraphs of KN , 2000, Comput. Geom..

[20]  Raimund Seidel,et al.  On the Number of Cycles in Planar Graphs , 2007, COCOON.

[21]  Marc Noy,et al.  Flipping Edges in Triangulations , 1996, SCG '96.

[22]  Monty Newborn,et al.  Optimal crossing-free Hamiltonian circuit drawings of Kn , 1980, J. Comb. Theory, Ser. B.

[23]  Kiyoshi Hosono On convex decompositions of a planar point set , 2009, Discret. Math..

[24]  Micha Sharir,et al.  On the number of crossing-free matchings, (cycles, and partitions) , 2006, SODA '06.

[25]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .