On the role of solute drag in reconciling laboratory and natural constraints on olivine grain growth kinetics

We investigate the effect of solute drag on the grain growth (GG) kinetics in olivine-rich rocks through full field and mean field modelling. Considering a drag force exerted by impurities on grain boundary migration allows reconciling laboratory and natural constraints on olivine GG kinetics. Solute drag is implemented in a full field level-set framework and in a mean field model that explicitly accounts for a grain size distribution. After calibration of the mean field model on full field results, both models are able to both reproduce laboratory GG kinetics and predict grain sizes consistent with observations in peridotite xenoliths from different geological contexts.

[1]  Modesar Shakoor,et al.  A new finite element strategy to simulate microstructural evolutions , 2020 .

[2]  C. Ganino,et al.  Full Field and Mean Field Modeling of Grain Growth in a Multiphase Material Under Dry Conditions: Application to Peridotites , 2020, Journal of Geophysical Research: Solid Earth.

[3]  A. Vauchez,et al.  Deformation, Annealing, Melt‐Rock Interaction, and Seismic Properties of an Old Domain of the Equatorial Atlantic Lithospheric Mantle , 2019, Tectonics.

[4]  T. Nakakoji,et al.  Diffusion Creep and Grain Growth in Forsterite +20 vol% Enstatite Aggregates: 2. Their Common Diffusional Mechanism and Its Consequence for Weak‐Temperature‐Dependent Viscosity , 2018, Journal of Geophysical Research: Solid Earth.

[5]  S. Ito,et al.  Diffusion Creep and Grain Growth in Forsterite +20 vol% Enstatite Aggregates: 1. High‐Resolution Experiments and Their Data Analyses , 2018, Journal of Geophysical Research: Solid Earth.

[6]  C. Ganino,et al.  2D and 3D simulation of grain growth in olivine aggregates using a full field model based on the level set method , 2018, Physics of the Earth and Planetary Interiors.

[7]  P. Carrez,et al.  Systematic theoretical study of [001] symmetric tilt grain boundaries in MgO from 0 to 120 GPa , 2018, Physics and Chemistry of Minerals.

[8]  K. Marquardt,et al.  The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments , 2018, Physics and Chemistry of Minerals.

[9]  Marc Bernacki,et al.  Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws , 2017 .

[10]  I. Campbell,et al.  A subsidiary fast-diffusing substitution mechanism of Al in forsterite investigated using diffusion experiments under controlled thermodynamic conditions , 2017, Contributions to Mineralogy and Petrology.

[11]  Marc Bernacki,et al.  3D level set modeling of static recrystallization considering stored energy fields , 2016 .

[12]  N. Bozzolo,et al.  Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations , 2016, Journal of Materials Science.

[13]  Pierre-Olivier Bouchard,et al.  An efficient and parallel level set reinitialization method - Application to micromechanics and microstructural evolutions , 2015 .

[14]  Benjamin Scholtes,et al.  New finite element developments for the full field modeling of microstructural evolutions using the level set method , 2015 .

[15]  R. Carlson,et al.  The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite , 2015 .

[16]  A. Vauchez,et al.  Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: Constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift , 2015 .

[17]  Marc Bernacki,et al.  Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework , 2014 .

[18]  W. Griffin,et al.  Emplacement ages and sources of kimberlites and related rocks in southern Africa: U–Pb ages and Sr–Nd isotopes of groundmass perovskite , 2014, Contributions to Mineralogy and Petrology.

[19]  A. Murphy,et al.  Space charge , 2014, Radiopaedia.org.

[20]  Y. Orihashi,et al.  The age of Udachnaya-East kimberlite: U/Pb and 40Ar/39Ar data , 2014, Doklady Earth Sciences.

[21]  D. V. Kuz’min,et al.  New data on the mineralogy of megacrystalline pyrope peridotite from the Udachnaya kimberlite pipe, Siberian Craton, Yakutian diamondiferous province , 2014, Doklady Earth Sciences.

[22]  K. Michibayashi,et al.  Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain size sensitive creep: 3. Application of grain growth and flow laws on peridotite ultramylonite , 2014 .

[23]  David Bercovici,et al.  Plate tectonics, damage and inheritance , 2013, Nature.

[24]  A. Tommasi,et al.  Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root , 2013 .

[25]  A. Goncharov,et al.  Thermal state, oxygen fugacity and COH fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia , 2012 .

[26]  Karim Hitti,et al.  Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context , 2012 .

[27]  D. Bercovici,et al.  Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning , 2012 .

[28]  J. Korenaga,et al.  Olivine rheology, shear stress, and grain growth in the lithospheric mantle: Geological constraints from the Kaapvaal craton , 2012 .

[29]  A. Berger,et al.  The role of second phases for controlling microstructural evolution in polymineralic rocks: A review , 2011 .

[30]  Thierry Coupez,et al.  Level set framework for the finite element modelling of recrystallization and grain growth in polycrystalline materials , 2011 .

[31]  N. Ohashi,et al.  Grain growth systematics for forsterite ± enstatite aggregates: Effect of lithology on grain size in the upper mantle , 2010 .

[32]  D. Cornell,et al.  Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry , 2010 .

[33]  Thierry Coupez,et al.  Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations , 2009 .

[34]  Thierry Coupez,et al.  Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework , 2009 .

[35]  J. Bascou,et al.  An integrated study of microstructural, geochemical, and seismic properties of the lithospheric mantle above the Kerguelen plume (Indian Ocean) , 2008 .

[36]  S. Karato,et al.  Effects of solute segregation on the grain-growth kinetics of orthopyroxene with implications for the deformation of the upper mantle , 2007 .

[37]  V. Kamenetsky,et al.  Survival times of anomalous melt inclusions from element diffusion in olivine and chromite , 2007, Nature.

[38]  T. Ohuchi,et al.  Grain growth in the forsterite–diopside system , 2007 .

[39]  S. Chakraborty,et al.  Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C , 2005 .

[40]  D. Kohlstedt,et al.  Grain boundaries as reservoirs of incompatible elements in the Earth's mantle , 2004, Nature.

[41]  D. Kohlstedt,et al.  Chemistry of grain boundaries in mantle rocks , 2003 .

[42]  N. Chatterjee,et al.  The Spatial Distribution of Garnets and Pyroxenes in Mantle Peridotites: Pressure–Temperature History of Peridotites from the Kaapvaal Craton , 2001 .

[43]  B. Evans,et al.  A few remarks on the kinetics of static grain growth in rocks , 2001 .

[44]  J. Chéry,et al.  A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine , 1999 .

[45]  W. Griffin,et al.  Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia , 1996 .

[46]  J. Cottin,et al.  Kerguelen basic and ultrabasic xenoliths: Evidence for long-lived Kerguelen hotspot activity , 1996 .

[47]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[48]  R. Carlson,et al.  ReOs, SmNd, and RbSr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism , 1995 .

[49]  R. Vissers,et al.  Shear zones in the upper mantle: A case study in an Alpine Iherzolite massif , 1991 .

[50]  P. Kelemen Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite , 1990 .

[51]  B. Harte,et al.  Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary-metasomatic mineralogy , 1990 .

[52]  S. Karato Grain growth kinetics in olivine aggregates , 1989 .

[53]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[54]  Kazuhiro Suzuki Grain-boundary enrichment of incompatible elements in some mantle peridotites , 1987 .

[55]  D. Kohlstedt,et al.  Rheology and structure of olivine‐basalt partial melts , 1986 .

[56]  M. Paterson,et al.  Rheology of synthetic olivine aggregates: Influence of grain size and water , 1986 .

[57]  S. H. Richardson,et al.  Evidence for a 150–200-km thick Archaean lithosphere from diamond inclusion thermobarometry , 1985, Nature.

[58]  R. M. Cannon,et al.  Space charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces , 1983 .

[59]  N. Carter,et al.  Rheology of the upper mantle: Inferences from peridotite xenoliths , 1980 .

[60]  J. Poirier,et al.  Dynamic recrystallization during creep of single‐crystalline halite: An experimental study , 1979 .

[61]  B. Harte Rock Nomenclature with Particular Relation to Deformation and Recrystallisation Textures in Olivine-Bearing Xenoliths , 1977, The Journal of Geology.

[62]  Mats Hillert,et al.  On the theory of normal and abnormal grain growth , 1965 .

[63]  John W. Cahn,et al.  The Impurity‐Drag Effect in Grain Boundary Motion , 1962 .

[64]  K. Lücke,et al.  A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities , 1957 .

[65]  J. Hermann,et al.  Substitution and diffusion of Cr 2+ and Cr 3+ in synthetic forsterite and natural olivine at 1200–1500 °C and 1 bar , 2018 .

[66]  J. Cottin,et al.  The Kerguelen Archipelago: an hypothetic continental mafic protolith , 1995 .

[67]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[68]  JOSEPH V. Smith,et al.  Lherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel , 1986, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[69]  E. Berger,et al.  Les dunites en enclaves dans les basaltes alcalins des îles océaniques : approche pétrologique , 1984 .

[70]  A. Nicolas,et al.  33 – CLASSIFICATION OF TEXTURES AND FABRICS OF PERIDOTITE XENOLITHS FROM SOUTH AFRICAN KIMBERLITES , 1975 .

[71]  A. Nicolas,et al.  Textures and Fabrics of Upper-Mantle Peridotites as Illustrated by Xenoliths from Basalts , 1975 .

[72]  A. Cottrell,et al.  Dislocation Theory of Yielding and Strain Ageing of Iron , 1949 .