Discovering Novel Causal Patterns From Biomedical Natural-Language Texts Using Bayesian Nets

Most of the biomedicine text mining approaches do not deal with specific cause-effect patterns that may explain the discoveries. In order to fill this gap, this paper proposes an effective new model for text mining from biomedicine literature that helps to discover cause-effect hypotheses related to diseases, drugs, etc. The supervised approach combines Bayesian inference methods with natural-language processing techniques in order to generate simple and interesting patterns. The results of applying the model to biomedicine text databases and its comparison with other state-of-the-art methods are also discussed.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  Wanda Pratt,et al.  Better rules, fewer features: a semantic approach to selecting features from text , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[3]  D. Swanson Fish Oil, Raynaud's Syndrome, and Undiscovered Public Knowledge , 2015, Perspectives in biology and medicine.

[4]  Steven J. M. Jones,et al.  CGMIM: Automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes , 2005, BMC Bioinformatics.

[5]  Wanda Pratt,et al.  H.3.3 Information Search and Retrieval , 2022 .

[6]  Meliha Yetisgen-Yildiz LitLinker : A System for Searching Potential Discoveries in Biomedical Literature , 2006 .

[7]  John McCallum,et al.  Text mining of DNA sequence homology searches. , 2003, Applied bioinformatics.

[8]  Sophia Ananiadou,et al.  Text Mining for Biology And Biomedicine , 2005 .

[9]  Roxana Gîrju,et al.  Automatic Detection of Causal Relations for Question Answering , 2003, ACL 2003.

[10]  R. Finn,et al.  PROGRAM UNCOVERS HIDDEN CONNECTIONS IN THE LITERATURE , 1998 .

[11]  Daniel Berleant,et al.  Mining MEDLINE: Abstracts, Sentences, or Phrases? , 2001, Pacific Symposium on Biocomputing.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[14]  Stan Matwin,et al.  Hierarchical Text Categorization as a Tool of Associating Genes with Gene Ontology Codes , 2004 .

[15]  Mark Yandell,et al.  Identification of key concepts in biomedical literature using a modified Markov heuristic , 2003, Bioinform..

[16]  P. Srinivasan,et al.  Mining MEDLINE: Postulating a Beneficial Role for Curcumin Longa in Retinal Diseases , 2004, HLT-NAACL 2004.

[17]  Michael W. Berry,et al.  Survey of Text Mining: Clustering, Classification, and Retrieval , 2007 .

[18]  D. Swanson Migraine and Magnesium: Eleven Neglected Connections , 2015, Perspectives in biology and medicine.

[19]  J. A. Fisher Fish Oil , 1988, The Lancet.

[20]  Lorraine K. Tanabe,et al.  GENETAG: a tagged corpus for gene/protein named entity recognition , 2005, BMC Bioinformatics.

[21]  Marc Weeber,et al.  Using concepts in literature-based discovery: simulating Swanson's Raynaud-fish oil and migraine-magnesium discoveries , 2001 .

[22]  Michael W. Berry,et al.  Survey of Text Mining , 2003, Springer New York.

[23]  L. Goddard Information Theory , 1962, Nature.

[24]  Joel D. Martin,et al.  PreBIND and Textomy – mining the biomedical literature for protein-protein interactions using a support vector machine , 2003, BMC Bioinformatics.

[25]  R. Finn,et al.  EPONYMOUS PRIZES HONOR SCIENTISTS, BUT DRAW CRITICISM , 1998 .

[26]  Byoung-Tak Zhang,et al.  PubMiner: Machine Learning-Based Text Mining System for Biomedical Information Mining , 2004, AIMSA.

[27]  Jonathan D. Wren,et al.  Extending the mutual information measure to rank inferred literature relationships , 2004, BMC Bioinformatics.

[28]  D. Swanson ASIST Award of Merit Acceptance Speech: On the Fragmentation of Knowledge, the Connection Explosion, and Assembling Other People's Ideas , 2005 .

[29]  Carmen Lacave Rodero Explicación en redes bayesianas causales: aplicaciones médicas , 2002 .

[30]  Padmini Srinivasan,et al.  Text mining: Generating hypotheses from MEDLINE , 2004, J. Assoc. Inf. Sci. Technol..