Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint

In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a \((0.4-\varepsilon )\)-approximation algorithm requiring only a single pass through the data. This improves on the currently best \((0.363-\varepsilon )\)-approximation algorithm. The required memory space depends only on the size of the knapsack capacity and \(\varepsilon \).

[1]  Sergei Vassilvitskii,et al.  Fast greedy algorithms in mapreduce and streaming , 2013, SPAA.

[2]  Yuval Filmus,et al.  Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search , 2012, SIAM J. Comput..

[3]  Andrew McGregor,et al.  Graph stream algorithms: a survey , 2014, SGMD.

[4]  Andreas Krause,et al.  Streaming submodular maximization: massive data summarization on the fly , 2014, KDD.

[5]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[6]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[7]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[8]  Amit Chakrabarti,et al.  Submodular maximization meets streaming: matchings, matroids, and more , 2015, Math. Program..

[9]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[10]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[11]  Andrew McGregor,et al.  Better Streaming Algorithms for the Maximum Coverage Problem , 2018, Theory of Computing Systems.

[12]  Jon Lee,et al.  Maximum-Entropy Sampling , 2006, Springer Series in Operations Research and Financial Engineering.

[13]  Vahab S. Mirrokni,et al.  Almost Optimal Streaming Algorithms for Coverage Problems , 2016, SPAA.

[14]  T.-H. Hubert Chan,et al.  Online Submodular Maximization with Free Disposal: Randomization Beats ¼ for Partition Matroids , 2017, SODA.

[15]  Noga Alon,et al.  Optimizing budget allocation among channels and influencers , 2012, WWW.

[16]  Kent Quanrud,et al.  Streaming Algorithms for Submodular Function Maximization , 2015, ICALP.

[17]  Eric Balkanski,et al.  The adaptive complexity of maximizing a submodular function , 2018, STOC.

[18]  J. Vondrák,et al.  Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes , 2014 .

[19]  Huy L. Nguyen,et al.  A New Framework for Distributed Submodular Maximization , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).