Efficient Processing of Narrow Range Queries in Multi-dimensional Data Structures

Multi-dimensional data structures are applied in many real index applications, i.e. data mining, indexing multimedia data, indexing of text documents and so on. Many index structures and algorithms have been proposed. There are two major approaches to multi-dimensional indexing: data structures to indexing metric and vector spaces. R-trees, R*-trees and (B)UB-trees are representatives of the vector data structures. These data structures provide efficient processing of many types of queries, i.e. point queries, range queries and so on. As far as the vector data structures are concerned, the range query retrieves all points in defined hyper box in an n-dimensional space. The narrow range query is an important type of the range query. Its processing is inefficient in vector data structures. Moreover, the efficiency decreases as the dimension of the indexed space increases. We depict an application of the signature for more efficient processing of narrow range queries. The approach puts the signature into the multi-dimensional data structures like R-tree or UB-tree but original functionalities are preserved, i.e. the range query algorithm for general range query. The novel data structure is called the signature data structure, e.g., signature R-tree or signature UB-tree

[1]  Christos Faloutsos,et al.  Signature files: an access method for documents and its analytical performance evaluation , 1984, TOIS.

[2]  Christian Böhm,et al.  Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases , 2001, CSUR.

[3]  Jae-Woo Chang,et al.  Multikey access methods based on term discrimination and signature clustering , 1989, SIGIR '89.

[4]  Torsten. Grust,et al.  Accelerating XPath location steps , 2002, SIGMOD '02.

[5]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[6]  Bernd-Uwe Pagel,et al.  Towards an analysis of range query performance in spatial data structures , 1993, PODS '93.

[7]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[8]  Václav Snásel,et al.  Multidimensional term indexing for efficient processing of complex queries , 2004, Kybernetika.

[9]  Yannis Manolopoulos,et al.  Advanced Database Indexing , 1999, Advances in Database Systems.

[10]  Rudolf Bayer,et al.  The Universal B-Tree for Multidimensional Indexing: general Concepts , 1997, WWCA.

[11]  Hyoung-Joo Kim,et al.  The RS-tree: An efficient data structure for distance browsing queries , 2001, Inf. Process. Lett..

[12]  Michael Freeston A general solution of the n-dimensional B-tree problem , 1995, SIGMOD '95.

[13]  Steven J. DeRose,et al.  XML Path Language (XPath) Version 1.0 , 1999 .

[14]  Yannis Manolopoulos,et al.  R-Trees: Theory and Applications , 2005, Advanced Information and Knowledge Processing.

[15]  Pavel Zezula,et al.  Dynamic partitioning of signature files , 1991, TOIS.

[16]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[17]  Yannis Manolopoulos,et al.  Advanced Signature Indexing for Multimedia and Web Applications , 2003, Advances in Database Systems.

[18]  Uwe Deppisch,et al.  S-tree: a dynamic balanced signature index for office retrieval , 1986, SIGIR '86.

[19]  Hans-Jörg Schek,et al.  A Signature Access Method for the Starburst Database System , 1989, VLDB.

[20]  Elisa Bertino,et al.  Using spatial data access structures for filtering nearest neighbor queries , 2002, Data Knowl. Eng..

[21]  Pavel Zezula,et al.  A Metric Index for Approximate Text Management , 2002, ISDB.

[22]  Timos K. Sellis,et al.  Processing Star Queries on Hierarchically-Clustered Fact Tables , 2002, VLDB.

[23]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[24]  Václav Snásel,et al.  Implementation of XPath Axes in the Multi-dimensional Approach to Indexing XML Data , 2004, EDBT Workshops.

[25]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[26]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[27]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[28]  C. M. Sperberg-McQueen,et al.  eXtensible Markup Language (XML) 1.0 (Second Edition) , 2000 .