Physiology and genetic architecture of traits associated with cadmium tolerance and accumulation in Populus nigra L.

[1]  Guifen Liu,et al.  Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii × Populus nigra. , 2015, Gene.

[2]  H. Rennenberg,et al.  Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. , 2015, The New phytologist.

[3]  Guo-ping Zhang,et al.  Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley , 2014, BMC Genomics.

[4]  G. Bryan,et al.  Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.) , 2014, Theoretical and Applied Genetics.

[5]  C. Peng,et al.  Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens. , 2014, Plant, cell & environment.

[6]  M. Geisler,et al.  Plant ABC Transporters , 2014, Signaling and Communication in Plants.

[7]  N. Tuteja,et al.  Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. , 2013, Plant physiology and biochemistry : PPB.

[8]  M. Kim,et al.  Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). , 2013, Genome.

[9]  M. Tyree,et al.  A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W] , 2013, Plant Physiology.

[10]  Aurelio Gómez-Cadenas,et al.  Biotechnological Approaches to Study Plant Responses to Stress , 2012, BioMed research international.

[11]  Marina Cvjetko Bubalo,et al.  Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period , 2013, Environmental Science and Pollution Research.

[12]  H. Küpper,et al.  Cadmium toxicity in plants. , 2013, Metal ions in life sciences.

[13]  I. Fleck,et al.  Photosynthetic and growth responses of Populus clones Eridano and I-214 submitted to elevated Zn concentrations , 2012 .

[14]  M. Benavides,et al.  Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms , 2012 .

[15]  Nicolas Marron,et al.  Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp , 2012, BMC Plant Biology.

[16]  M. Aarts,et al.  The molecular mechanism of zinc and cadmium stress response in plants , 2012, Cellular and Molecular Life Sciences.

[17]  G. Tuskan,et al.  Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. , 2012, Tree physiology.

[18]  S. Pajević,et al.  Quantitative Assessment of Effects of Cadmium on the Histological Structure of Poplar and Willow Leaves , 2012, Water, Air, & Soil Pollution.

[19]  Youngsook Lee,et al.  The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. , 2012, The Plant journal : for cell and molecular biology.

[20]  Michele Morgante,et al.  Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar , 2012, BMC Plant Biology.

[21]  G. Mugnozza,et al.  Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. , 2011, Tree physiology.

[22]  N. Marmiroli,et al.  Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. , 2011, Tree physiology.

[23]  J. Jiménez-Gómez Next Generation Quantitative Genetics in Plants , 2011, Front. Plant Sci..

[24]  Tongxiang Liu,et al.  Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. , 2011, Physiologia plantarum.

[25]  Keyan Zhao,et al.  Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping , 2011, PLoS genetics.

[26]  V. Iori,et al.  Induction of metal binding compounds and antioxidative defence in callus cultures of two black poplar (P. nigra) clones with different tolerance to cadmium , 2011, Plant Cell, Tissue and Organ Culture (PCTOC).

[27]  W. Cao,et al.  Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat , 2011, Acta Physiologiae Plantarum.

[28]  M. Prasad,et al.  Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—A review , 2011 .

[29]  R. Tognetti,et al.  Mapping Cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis , 2011 .

[30]  D. Golldack,et al.  Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network , 2011, Plant Cell Reports.

[31]  P. Senthilkumar,et al.  Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. , 2011, Journal of hazardous materials.

[32]  N. Rascio,et al.  Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? , 2011, Plant science : an international journal of experimental plant biology.

[33]  M. Morgante,et al.  Bud set in poplar--genetic dissection of a complex trait in natural and hybrid populations. , 2011, The New phytologist.

[34]  A. Polle,et al.  Impact of cadmium on young plants of Populus euphratica and P. × canescens, two poplar species that differ in stress tolerance , 2011, New Forests.

[35]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[36]  P. A. Rea,et al.  Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters , 2010, Proceedings of the National Academy of Sciences.

[37]  M. Iqbal,et al.  Uptake-related parameters as indices of phytoremediation potential , 2010, Biologia.

[38]  P. Russell,et al.  Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance* , 2010, The Journal of Biological Chemistry.

[39]  D. Wanke,et al.  An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? , 2010, Plant biology.

[40]  Glenda Willems,et al.  Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. , 2010, The New phytologist.

[41]  G. Scarascia Mugnozza,et al.  Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species , 2010, Tree Genetics & Genomes.

[42]  Wanqin Yang,et al.  Cadmium accumulation and growth responses of a poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil. , 2010, Journal of hazardous materials.

[43]  R. Wu,et al.  An Improved Approach for Mapping Quantitative Trait Loci in a Pseudo-Testcross: Revisiting a Poplar Mapping Study , 2010, Bioinformatics and biology insights.

[44]  V. Iori,et al.  Screening of Poplar Clones for Cadmium Phytoremediation Using Photosynthesis, Biomass and Cadmium Content Analyses , 2009, International journal of phytoremediation.

[45]  V. Iori,et al.  Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. , 2009, Plant biology.

[46]  Namiko Satoh-Nagasawa,et al.  A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku , 2010, Theoretical and Applied Genetics.

[47]  S. Zeeman,et al.  Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. , 2009, Plant, cell & environment.

[48]  S. Mori,et al.  Time course analysis of gene regulation under cadmium stress in rice , 2009, Plant and Soil.

[49]  Stefan Jansson,et al.  The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. , 2009, The New phytologist.

[50]  C. Hermans,et al.  Molecular mechanisms of metal hyperaccumulation in plants. , 2009, The New phytologist.

[51]  V. Sadras,et al.  Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine , 2009 .

[52]  G. Scarascia Mugnozza,et al.  Metal Tolerance, Accumulation and Translocation in Poplar and Willow Clones Treated with Cadmium in Hydroponics , 2009 .

[53]  R. Ceulemans,et al.  Genomic regions involved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume , 2009, Tree Genetics & Genomes.

[54]  L. Hoffmann,et al.  Quantitative changes in protein expression of cadmium‐exposed poplar plants , 2008, Proteomics.

[55]  Wenchao Du,et al.  Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). , 2007, Chemosphere.

[56]  A. Schulman,et al.  A major gene for grain cadmium accumulation in oat (Avena sativa L.). , 2007, Genome.

[57]  W. Wenzel,et al.  Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. , 2007, Environmental pollution.

[58]  Glenda Willems,et al.  The Genetic Basis of Zinc Tolerance in the Metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): An Analysis of Quantitative Trait Loci , 2007, Genetics.

[59]  Samuel Arvidsson,et al.  A Major Quantitative Trait Locus for Cadmium Tolerance in Arabidopsis halleri Colocalizes with HMA4, a Gene Encoding a Heavy Metal ATPase1[OA] , 2007, Plant Physiology.

[60]  G. Mugnozza,et al.  Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait , 2007, Tree Genetics & Genomes.

[61]  C. F. Curtiss History , Contribution , and Future of Quantitative Genetics in Plant Breeding : Lessons From Maize , 2007 .

[62]  P. Nilsson,et al.  The genetics and genomics of the drought response in Populus. , 2006, The Plant journal : for cell and molecular biology.

[63]  N. Leonhardt,et al.  Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. , 2006, Biochimie.

[64]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[65]  Mark G. M. Aarts,et al.  QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens , 2006, Theoretical and Applied Genetics.

[66]  S. Clemens,et al.  Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri. , 2006, Plant, cell & environment.

[67]  C. Mundt,et al.  Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust , 2005, Theoretical and Applied Genetics.

[68]  J. Arocena,et al.  Uptake, Distribution, and Speciation of Chromium in Brassica Juncea , 2005, International journal of phytoremediation.

[69]  S. Orlović,et al.  Cadmium phytoextraction potential of poplar clones (Populus spp.). , 2005, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[70]  N. Baker,et al.  Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv-/Fm-; without measuring Fo-; , 1997, Photosynthesis Research.

[71]  S. Ceccarelli,et al.  Estimation of heritability from varietal trials data , 1993, Theoretical and Applied Genetics.

[72]  W. Bilger,et al.  Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer , 2004, Photosynthesis Research.

[73]  D. Neale,et al.  From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees , 2003 .

[74]  M. Iannelli,et al.  Interaction of Cadmium with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel1 , 2003, Plant Physiology.

[75]  P. Ximénez-Embún,et al.  Uptake of Heavy Metals by Lupin Plants in Artificially Contaminated Sand: Preliminary Results , 2002 .

[76]  Wu Feibo,et al.  Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.) , 1998 .

[77]  D. Godbold,et al.  Cadmium and copper uptake and distribution in Mediterranean tree seedlings , 1996 .

[78]  M. Macnair The genetics of metal tolerance in vascular plants. , 1993, The New phytologist.

[79]  W. Bilger,et al.  Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. , 1991, Planta.

[80]  J. Briantais,et al.  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence , 1989 .

[81]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[82]  D. R. Hoagland,et al.  Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. , 1940 .