Assessment of robust reconstruction algorithms for compressive sensing spectral-domain optical coherence tomography

In this paper, we performed an in-depth assessment of current state-of-the-art compressive sensing (CS) reconstruction algorithms, including YALL1, CSALSA, NESTA, SPGL1, TwIST and SpaRSA for use in spectral domain optical coherence tomography (SD-OCT). A brief description of mentioned algorithms and criterion in assessing performance between constraint and unconstraint algorithms are presented. The performance of all algorithms is initially assessed using a set of artificial noiseless A-scan signals with different spatial-domain dynamic range. Reconstruction error, computation time, noise tolerance and reliability of each algorithm are used as key metrics. A fair speed comparison is then implemented. Finally, computation time, SNR and local contrast of the algorithms are evaluated on real OCT Bscan data. Our results show that SPGL1 and YALL1 have moderately better performance.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  Wotao Yin,et al.  A Fixed-Point Continuation Method for L_1-Regularization with Application to Compressed Sensing , 2007 .

[3]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[4]  Ning Zhang,et al.  Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography. , 2012, Optics letters.

[5]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[6]  Elsa D. Angelini,et al.  Comparison of reconstruction algorithms in compressed sensing applied to biological imaging , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[8]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[9]  Daibashish Gangopadhyay,et al.  Compressed sensing reconstruction: Comparative study with applications to ECG bio-signals , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[10]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[11]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[12]  Jin U. Kang,et al.  Modified compressive sensing optical coherence tomography with noise reduction. , 2012, Optics letters.

[13]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[14]  Brett E. Bouma,et al.  Optical Coherence Tomography , 2013 .

[15]  Jie Huang,et al.  Comparison of basis pursuit algorithms for sparse channel estimation in underwater acoustic OFDM , 2010, OCEANS'10 IEEE SYDNEY.

[16]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[17]  Junzhou Huang,et al.  Composite splitting algorithms for convex optimization , 2011, Comput. Vis. Image Underst..

[18]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[19]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[20]  Graeme Pope,et al.  Compressive sensing: a summary of reconstruction algorithms , 2009 .

[21]  Yifan Jian,et al.  Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography , 2011, Biomedical optics express.

[22]  Wolfgang Drexler,et al.  Optical coherence tomography: Technology and applications , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[23]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[24]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[25]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[26]  Jin U Kang,et al.  Sparse OCT: optimizing compressed sensing in spectral domain optical coherence tomography , 2011, BiOS.

[27]  Elsa D. Angelini,et al.  Numerical evaluation of sampling bounds for near-optimal reconstruction in compressed sensing , 2011, 2011 18th IEEE International Conference on Image Processing.

[28]  Shutao Li,et al.  Sparsity based denoising of spectral domain optical coherence tomography images , 2012, Biomedical optics express.

[29]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[30]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[31]  Jin U. Kang,et al.  Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography , 2010, Optics express.

[32]  Paul J Mackenzie,et al.  Rapid volumetric OCT image acquisition using compressive sampling. , 2010, Optics express.

[33]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[34]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[35]  Andre van Schaik,et al.  A comparison between compressed sensing algorithms in Electrical Impedance Tomography , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[36]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[37]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[38]  Bahaa E. A. Saleh,et al.  Compressed sensing in optical coherence tomography , 2010, BiOS.

[39]  J. Fujimoto,et al.  Optical coherence tomography: technology and applications , 2002, IEEE/LEOS International Conference on Optical MEMs.

[40]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[41]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[42]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[43]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..